On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 30.

We study the inverse problem of obstacle detection for Laplace’s equation with partial Cauchy data. The strategy used is to reduce the inverse problem into the minimization of a cost-type functional: the Kohn–Vogelius functional. Since the boundary conditions are unknown on an inaccessible part of the boundary, the variables of the functional are the shape of the inclusion but also the Cauchy data on the inaccessible part. Hence we first focus on recovering these boundary conditions, i.e. on the data completion problem. Due to the ill-posedness of this problem, we regularize the functional through a Tikhonov regularization. Then we obtain several theoretical properties for this data completion problem, as convergence properties, in particular when data are corrupted by noise. Finally we propose an algorithm to solve the inverse obstacle problem with partial Cauchy data by minimizing the Kohn–Vogelius functional. Thus we obtain the gradient of the functional computing both the derivatives with respect to the missing data and to the shape. Several numerical experiences are shown to discuss the performance of the algorithm.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017056
Classification : 35R30, 49Q10, 35N25, 35R25
Mots-clés : Geometric inverse problem, Cauchy problem, data completion problem, shape optimization problem, inverse obstacle problem, Laplace’s equation, Kohn–Vogelius functional
Caubet, Fabien 1 ; Dardé, Jérémi 1 ; Godoy, Matías 1

1
@article{COCV_2019__25__A30_0,
     author = {Caubet, Fabien and Dard\'e, J\'er\'emi and Godoy, Mat{\'\i}as},
     title = {On the data completion problem and the inverse obstacle problem with partial {Cauchy} data for {Laplace{\textquoteright}s} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017056},
     zbl = {1445.35325},
     mrnumber = {3990649},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017056/}
}
TY  - JOUR
AU  - Caubet, Fabien
AU  - Dardé, Jérémi
AU  - Godoy, Matías
TI  - On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017056/
DO  - 10.1051/cocv/2017056
LA  - en
ID  - COCV_2019__25__A30_0
ER  - 
%0 Journal Article
%A Caubet, Fabien
%A Dardé, Jérémi
%A Godoy, Matías
%T On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017056/
%R 10.1051/cocv/2017056
%G en
%F COCV_2019__25__A30_0
Caubet, Fabien; Dardé, Jérémi; Godoy, Matías. On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 30. doi : 10.1051/cocv/2017056. http://www.numdam.org/articles/10.1051/cocv/2017056/

[1] J. Abouchabaka and C. Tajani, An alternating KMF algorithm to solve the Cauchy problem for Laplaces equation. Preprint (2014) | arXiv

[2] R. Aboulaich, A.B. Abda and M. Kallel, A control type method for solving the Cauchy–Stokes problem. Appl. Math Modell. 37 (2013) 4295–4304 | DOI | MR | Zbl

[3] L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Dis. Contin. Dyn. Syst. Ser. B 8 (2007) 389–416 | MR | Zbl

[4] G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Annali della Scuola Normale Superiore di Pisa – Classe di Sci. 29 (2000) 755–806 | Numdam | MR | Zbl

[5] S. Amstutz, The topological asymptotic for the Navier-Stokes equations. ESAIM: COCV 11 (2005) 401–425 | Numdam | MR | Zbl

[6] S. Andrieux, T. Baranger and A.B. Abda, Solving Cauchy problems by minimizing an energy-like functional. Inverse problems 22 (2006) 115 | DOI | MR | Zbl

[7] M. Azaïez, F.B. Belgacem and H. El Fekih On Cauchy’s problem: II. Completion, regularization and approximation. Inverse Probl. 22 (2006) 1307 | DOI | MR | Zbl

[8] M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods. Math. Models Methods Appl. Sci. 21 (2011) 2069–2101 | DOI | MR | Zbl

[9] F.B. Belgacem, Why is the Cauchy problem severely ill-posed? Inverse Probl. 23 (2007) 823 | DOI | MR | Zbl

[10] F.B. Belgacem and H. El Fekih On Cauchy’s problem: I. A variational Steklov–Poincaré theory. Inverse Probl. 21 (2005) 1915 | DOI | MR | Zbl

[11] F.B. Belgacem, H. El Fekih and F. Jelassi, The Lavrentiev regularization of the data completion problem. Inverse Probl. 24 (2008) 045009 | DOI | MR | Zbl

[12] L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Probl. 26 (2010) 095016 | DOI | MR | Zbl

[13] L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains. Appl. Anal. 89 (2010) 1745–1768 | DOI | MR | Zbl

[14] L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Probl. Imaging 4 (2010) 351–377 | DOI | MR | Zbl

[15] H. Brezis. Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maî trise. Collection of Applied Mathematics for the Master’s Degree. Théorie et applications. [Theory and applications]. Masson, Paris, 1983 | MR | Zbl

[16] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. In Vol. 65 of Progr. Nonlin. Differ. Equ. Appl. Birkhäuser Boston Inc., Boston, MA (2005) | MR | Zbl

[17] M. Burger and S.J. Osher, A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16 (2005) 263–301 | DOI | MR | Zbl

[18] E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comput. 86 (2017) 75–96 | DOI | MR | Zbl

[19] F. Caubet, C. Conca and M. Godoy, On the detection of several obstacles in 2d stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Probl. Imaging 10 (2016) 327–367 | DOI | MR | Zbl

[20] F. Caubet, M. Dambrine and D. Kateb, Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions. Inverse Probl. 29 (2013) 115011, 26 | DOI | MR | Zbl

[21] F. Caubet, M. Dambrine, D. Kateb and C.Z. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Probl. Imaging 7 (2013) 123–157 | DOI | MR | Zbl

[22] A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization. Inverse Probl. 17 (2001) 553 | DOI | MR | Zbl

[23] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory. In Vol. 93 of Appl. Math. Sci. Springer-Verlag, Berlin, 2nd edition (1998) | MR | Zbl

[24] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 96 (2002) 95–121 | MR | Zbl

[25] J. Dardé. Quasi-reversibility and level set methods applied to elliptic inverse problems. Thesis, Université Paris-Diderot – Paris VII (2010)

[26] J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Preprint (2015) | arXiv | MR

[27] M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems. Inverse Probl. 19 (2003) 685–701 | DOI | MR | Zbl

[28] H.W. Engl, M. Hanke and A. Neubauer. Regularization of inverse problems, in Vol. 375. Springer Science and Business Media (1996) | DOI | MR | Zbl

[29] A.V. Fursikov. Optimal control of distributed systems. Theory and applications. AMS (1999) | MR | Zbl

[30] M. Godoy. The inverse problem of obstacle detection via optimization methods. Thesis, Universidad de Chile, July (2016)

[31] P. Guillaume and K. Sid Idris The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 41 (2002) 1042–1072 | DOI | MR | Zbl

[32] P. Guillaume and K. Sid Idris Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1–31 | DOI | MR | Zbl

[33] J. Hadamard. Le probleme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, in Vol. 220 (1932) | JFM

[34] H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems. Inverse Prob. 21 (2005) 935–953 | DOI | MR | Zbl

[35] H. Han, L. Ling and T. Takeuchi, An energy regularization for Cauchy problems of Laplace equation in annulus domain. Commun. Comput. Phys. 9 (2011) 878–896 | DOI | MR | Zbl

[36] F. Hecht, Finite Element Library FREEFEM++. Available at: http://www.freefem.org/ff++/ (2019)

[37] A. Henrot and M. Pierre. Variation et optimisation de formes, Une analyse géométrique. [A geometric analysis]. In Vol. 48 of (2019). Mathématiques and Applications (Berlin) [Mathematics and Applications]. Springer, Berlin (2005) | DOI | MR | Zbl

[38] V.A. Kozlov, V.G. Maz’Ya and A. Fomin, An iterative method for solving the Cauchy problem for elliptic equations. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 31 (1991) 64–74 | MR | Zbl

[39] R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21 (2005) 1207–1223 | DOI | MR | Zbl

[40] J. Leblond and D. Ponomarev, Recovery of harmonic functions from partial boundary data respecting internal pointwise values. J.Inverse Ill-Posed Probl. 25 (2017) 157–174 | DOI | MR | Zbl

[41] F. Murat and J. Simon. Sur le contrôle par un domaine géométrique. Rapport du L.A. 189, 1976, Université de Paris VI, France.

[42] R. Potthast, A survey on sampling and probe methods for inverse problems. Inverse Problems 22 (2006) R1–R47 | DOI | MR | Zbl

[43] W. Rundell, Recovering an obstacle using integral equations. Inverse Probl. Imaging 3 (2009) 319–332 | DOI | MR | Zbl

[44] G. Savaré, Regularity and perturbation results for mixed second order elliptic problems. Commun. Par. Diff. Equ. 22 (1997) 869–899 | DOI | MR | Zbl

[45] J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687 1981 | DOI | MR | Zbl

[46] J. Simon, Second variations for domain optimization problems, In Control and estimation of distributed parameter systems (Vorau, 1988), in Vol. 91 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1989) 361–378 | MR | Zbl

[47] J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization. Shape sensitivity analysis. In Vol. 16 of Springer Series in Computational Mathematics. Springer–Verlag, Berlin (1992) | MR | Zbl

Cité par Sources :