A maximum principle for controlled stochastic factor model
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 495-517.

In the present work, we consider an optimal control for a three-factor stochastic factor model. We assume that one of the factors is not observed and use classical filtering technique to transform the partial observation control problem for stochastic differential equation (SDE) to a full observation control problem for stochastic partial differential equation (SPDE). We then give a sufficient maximum principle for a system of controlled SDEs and degenerate SPDE. We also derive an equivalent stochastic maximum principle. We apply the obtained results to study a pricing and hedging problem of a commodity derivative at a given location, when the convenience yield is not observable.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017053
Classification : 93E20, 60H15
Mots clés : Stochastic partial differential equations, stochastic factor model, stochastic maximum principle, Zakai equation
Socgnia, Virginie Konlack 1 ; Pamen, Olivier Menoukeu 1

1
@article{COCV_2018__24_2_495_0,
     author = {Socgnia, Virginie Konlack and Pamen, Olivier Menoukeu},
     title = {A maximum principle for controlled stochastic factor model},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {495--517},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017053},
     mrnumber = {3816409},
     zbl = {1401.93231},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017053/}
}
TY  - JOUR
AU  - Socgnia, Virginie Konlack
AU  - Pamen, Olivier Menoukeu
TI  - A maximum principle for controlled stochastic factor model
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 495
EP  - 517
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017053/
DO  - 10.1051/cocv/2017053
LA  - en
ID  - COCV_2018__24_2_495_0
ER  - 
%0 Journal Article
%A Socgnia, Virginie Konlack
%A Pamen, Olivier Menoukeu
%T A maximum principle for controlled stochastic factor model
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 495-517
%V 24
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017053/
%R 10.1051/cocv/2017053
%G en
%F COCV_2018__24_2_495_0
Socgnia, Virginie Konlack; Pamen, Olivier Menoukeu. A maximum principle for controlled stochastic factor model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 495-517. doi : 10.1051/cocv/2017053. http://www.numdam.org/articles/10.1051/cocv/2017053/

[1] A. Bensoussan, Stochastic Control of Partially Observable Systems. Cambridge University Press (1992). | DOI | MR | Zbl

[2] A. Bensousssan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics and Stochastics Rep. 9 (1983) 169–222. | MR | Zbl

[3] S. Brendle and R. Carmona, Hedging in partially observable markets. Technical report, Princeton University. http://www.princeton.edu/~rcarmona/ (2005).

[4] R. Carmona and M. Ludkovski, Convenient yield model with partial observations and exponential utility. Technical report, Princeton University. https://www.princeton.edu/~rcarmona/download/fe/IJTAF2.pdf (2004).

[5] K. Du, S. Tang and Q. Zhang, Wm, p-solution (p ≥ 2) of linear degenerate backward stochastic partial differential equations in the whole space. J. Differ. Equ. 254 (2013) 2877–2904. | DOI | MR | Zbl

[6] N. Framstad, B. Øksendal and A. Sulem, Stochastic maximum principle for optimal control of jump diffusions and applications to finance. J. Optimiz. Theory Appl. 121 (2004) 77–98. | DOI | MR | Zbl

[7] R. Gibson and E.S. Schwartz, Stochastic convenience yield and the pricing of oil contingent claims. J. Finance, XLV(3) (2003).

[8] F. Gozzi and A. Swiech, Hamilton Jacobi Bellman equations for the optimal control of the Duncan Mortensen Zakai equation. J. Funct. Anal. 172 (2000). | DOI | MR | Zbl

[9] D. Hernández−Hernández and A. Schied, Robust utility maximization in a stochastic factor mode. Statist. Decisions 24 (2006) 109–125. | MR | Zbl

[10] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag New York (1988). | DOI | MR | Zbl

[11] N. El. Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

[12] N.V. Krylov and B.L. Rozovskii, On the cauchy problem for linear stochastic partial differential equations. Math. USSR Izvestija 11 (1977) 1267–1284. | DOI | MR | Zbl

[13] N.V. Krylov and B.L. Rozovskii, Stochastic evolution equations. J. Sov. Math. 16 (1981) 1233–1277. | DOI | Zbl

[14] N.V. Krylov and B.L. Rozovskii, Characteristics of degenerating second-order parabolic itô equations. J. Math. Sci. 32 (1982) 336–348. | DOI | Zbl

[15] J.-M. Lasry and P.-L. Lions, Contrôle stochastique avec informations partielles et applications à la finance. C. R. Acad. Sci. Paris 328 (1999) 1003–1010. | DOI | MR | Zbl

[16] Y. Li and H. Zheng, Weak necessary and sufficient stochastic maximum principle for markovian regime-switching diffusion models. Appl. Math. Optim. 71 (2015) 39–77. | DOI | MR | Zbl

[17] Q. Lü and X. Zhang, General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer, New York (2014). | DOI | MR | Zbl

[18] O. Menoukeu−Pamen, Maximum principles of markov regime-switching forward-backward stochastic differential equations with jumps and partial information. J. Optimiz. Theory Appl. 175 (2017) 373–410. | DOI | MR | Zbl

[19] O. Menoukeu−Pamen, T. Meyer−Brandis, F. Proske and H. Binti-Salleh, Malliavin calculus applied to optimal control of stochastic partial differential equations with jumps. Stochastic: An international Journal of Probability and Stochastic Processes 85 (2013) 431–463. | DOI | MR | Zbl

[20] R. Mortensen, Stochastic optimal control with noisy observations. Int. J. Control 4 (1966) 455–464. | DOI | MR | Zbl

[21] B. Øksendal, Stochastic Differential Equations. Springer, Berlin, Heidelberg, New York, 6th edition 2003. | DOI | MR

[22] B. Øksendal, F. Proske and T. Zhang, Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. Stochastic: An inter. J. Probab. Stoch. Proc. 77 (2005) 381–399. | DOI | MR | Zbl

[23] B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions. Springer, Berlin Heidelberg. 3rd edition 2009. | MR | Zbl

[24] R.T. Rockafeller, Convex Analysis. Princeton University Press (1970). | DOI | MR | Zbl

[25] S. Tang, he maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36 (1998) 1596–1617. | DOI | MR | Zbl

[26] X.Y. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31 (1993) 1462–1478. | DOI | MR | Zbl

Cité par Sources :