Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1249-1273.

In this paper, we investigatve the existence of solutions for critical Schrödinger–Kirchhoff type systems drien by nonlocal integro–differential operators. As a particular case, we consider the following system:

M ( [ ( u , v ) ] s , p p + ( u , v ) p , V p ) ( ( - Δ ) p s u + V ( x ) u p - 2 u ) = λ H u ( x , u , v ) + α p s * v β u α - 2 u in N M ( [ ( u , v ) ] s , p p + ( u , v ) p , V p ) ( ( - Δ ) p s v + V ( x ) u p - 2 u ) = λ H v ( x , u , v ) + β p s * u α v β - 2 v in N

where ( Δ ) p s is the fractional p –Laplace operator with 0 < s < 1 < p < N / s , α , β > 1 with α + β = p s * , M : 0 + 0 + is a continuous function, V : N + is a continuous function, λ > 0 is a real parameter. By applying the mountain pass theorem and Ekeland’s variational principle, we obtain the existence and asymptotic behaviour of solutions for the above systems under some suitable assumptions. A distinguished feature of this paper is that the above systems are degenerate, that is, the Kirchhoff function could vanish at zero. To the best of our knowledge, this is the first time to exploit the existence of solutions for fractional Schrödinger–Kirchhoff systems involving critical nonlinearities in N .

DOI : 10.1051/cocv/2017036
Classification : 35D30, 35R11, 35A15, 47G20
Mots-clés : Integro–differential operator, Schrödinger–Kirhhoff system, critical nonlinearity, variational methods
Mingqi, Xiang 1 ; Rădulescu, Vicenţiu D. 1 ; Zhang, Binlin 1

1
@article{COCV_2018__24_3_1249_0,
     author = {Mingqi, Xiang and R\u{a}dulescu, Vicen\c{t}iu D. and Zhang, Binlin},
     title = {Combined effects for fractional {Schr\"odinger{\textendash}Kirchhoff} systems with critical nonlinearities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1249--1273},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017036},
     zbl = {1453.35184},
     mrnumber = {3877201},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017036/}
}
TY  - JOUR
AU  - Mingqi, Xiang
AU  - Rădulescu, Vicenţiu D.
AU  - Zhang, Binlin
TI  - Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1249
EP  - 1273
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017036/
DO  - 10.1051/cocv/2017036
LA  - en
ID  - COCV_2018__24_3_1249_0
ER  - 
%0 Journal Article
%A Mingqi, Xiang
%A Rădulescu, Vicenţiu D.
%A Zhang, Binlin
%T Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1249-1273
%V 24
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017036/
%R 10.1051/cocv/2017036
%G en
%F COCV_2018__24_3_1249_0
Mingqi, Xiang; Rădulescu, Vicenţiu D.; Zhang, Binlin. Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1249-1273. doi : 10.1051/cocv/2017036. http://www.numdam.org/articles/10.1051/cocv/2017036/

[1] R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Academic Press, New York–London (2003) | MR

[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349–381 | DOI | MR | Zbl

[3] D. Applebaum, Lévy processes–from probability to finance quantum groups, Notices Amer. Math. Soc. 51 (2004) 1336–1347 | MR | Zbl

[4] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015) 699–714 | DOI | MR | Zbl

[5] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian ℝN. Differ. Equ. 255 (2013) 2340–2362 | DOI | MR | Zbl

[6] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011) | MR | Zbl

[7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437–477 | DOI | MR | Zbl

[8] L. Caffarelli, Non–local diffusions, drifts and games. Nonlinear Partial Differential Equations. Vol. 7 of Abel Symposia (2012) 37–52 | DOI | MR | Zbl

[9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32 (2007) 1245–1260 | DOI | MR | Zbl

[10] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26 (2013) 479–494 | DOI | MR | Zbl

[11] C. Chen, Infinitely many solutions to a class of quasilinear Schrödinger system in ℝN. Appl. Math. Lett. 52 (2016) 176–182 | DOI | MR | Zbl

[12] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)–polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74 (2011) 5962–5974 | DOI | MR | Zbl

[13] F.J.S.A. Corrêa and G.M. Figueiredo, On an elliptic equation of p–Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74 (2006) 236–277 | MR | Zbl

[14] F.J.S.A. Corrêa and G.M. Figueiredo, On a p–Kirchhoff equation via Krasnoselskii’s genus. Appl. Math. Lett. 22 (2009) 819–822 | DOI | MR | Zbl

[15] J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8 (2015) 1165–1235 | DOI | MR | Zbl

[16] S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in ℝN. Manuscripta Math. 153 (2017) 183–230 | DOI | MR | Zbl

[17] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573 | DOI | MR | Zbl

[18] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94 (2014) 156–170 | DOI | MR | Zbl

[19] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401 (2013) 706–713 | DOI | MR | Zbl

[20] P. Han, The effect of the domian topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents. Houston J. Math. 32 (2006) 1241–1257 | MR | Zbl

[21] N. Laskin, Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000) 298–305 | DOI | MR | Zbl

[22] N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66 (2002) 056108 | DOI | MR

[23] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. of Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977. North-Holland Math. Stud. 30 (1978) 284–346 | MR | Zbl

[24] X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity 29 (2016) 357–374 | DOI | MR | Zbl

[25] G. Molica Bisci Fractional equations with bounded primitive. Appl. Math. Lett. 27 (2014) 53–58 | DOI | MR | Zbl

[26] G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional for Schrödinger equations. Calc. Var. Partial Differ. Equ. 54 (2015) 2985–3008 | DOI | MR | Zbl

[27] G. Molica Bisci, V. Rădulescu and R. Servadei. Variational Methods for Nonlocal Fractional Problems. In Vol. 162 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2016) | MR

[28] A. Ourraoui, On a p–Kirchhoff problem involving a critical nonlinearity. C. R. Acad. Sci. Paris, Ser. I 352 (2014) 295–298 | DOI | MR | Zbl

[29] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in ℝN involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016) 1–22 | DOI | MR | Zbl

[30] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogenous Schrödinger-Kirchhoff type equations involving the fractional p–Laplacian in ℝN. Calc. Var. Partial Differ. Equ. 54 (2015) 2785–2806 | DOI | MR | Zbl

[31] P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions for fractional p–Kirchhoff equations. Adv. Nonlinear Anal. 5 (2016) 27–55 | DOI | MR | Zbl

[32] R. Servadei and E. Valdinoci, Mountain pass solutions for non–local elliptic operators. J. Math. Anal. Appl. 389 (2012) 887–898 | DOI | MR | Zbl

[33] R. Servadei and E. Valdinoci, Variational methods for non–local operators of elliptic type. Discrete Contin. Dyn. Syst. 33 (2013) 2105–2137 | DOI | MR | Zbl

[34] R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367 (2015) 67–102 | DOI | MR | Zbl

[35] M. Xiang, B. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non–local fractional p–Laplacian. J. Math. Anal. Appl. 424 (2015) 1021–1041 | DOI | MR | Zbl

[36] M. Xiang, B. Zhang and V. Rădulescu, Existence of nonnegative solutions for a bi-nonlocal fractional p–Kirchhoff type problem, Comput. Math. Appl. 71 (2016) 255–266 | DOI | MR | Zbl

[37] M. Xiang, B. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional p–Laplacian equations, J. Differ. Equ. 260 (2016) 1392–1413 | DOI | MR | Zbl

[38] M. Xiang, B. Zhang and V. Rădulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p–Laplacian, Nonlinearity 29 (2016) 3186–3205 | DOI | MR | Zbl

[39] X. Zhang, B. Zhang and D. Repovš, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142 (2016) 48–68 | DOI | MR | Zbl

Cité par Sources :