Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 28.

We present new abstract results on the interrelation between the minimizing movement scheme for gradient flows along a sequence of Γ-converging functionals and the gradient flow motion for the corresponding limit functional, in a general metric space. We are able to allow a relaxed form of minimization in each step of the scheme, and so we present new relaxation results too.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017035
Classification : 35K55, 35K90, 49M25, 47J25, 47J30
Mots-clés : Gradient flows, minimizing movements, Γ-convergence, relaxation, curves of maximal slope
Fleißner, Florentine 1

1
@article{COCV_2019__25__A28_0,
     author = {Flei{\ss}ner, Florentine},
     title = {\ensuremath{\Gamma}-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017035},
     zbl = {1442.49017},
     mrnumber = {3990648},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017035/}
}
TY  - JOUR
AU  - Fleißner, Florentine
TI  - Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017035/
DO  - 10.1051/cocv/2017035
LA  - en
ID  - COCV_2019__25__A28_0
ER  - 
%0 Journal Article
%A Fleißner, Florentine
%T Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017035/
%R 10.1051/cocv/2017035
%G en
%F COCV_2019__25__A28_0
Fleißner, Florentine. Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 28. doi : 10.1051/cocv/2017035. http://www.numdam.org/articles/10.1051/cocv/2017035/

[1] F. Almgren, J.E. Taylor and L. Wang, Curvature-Driven Flows: A Variational Approach. SIAM J. Control Optimiz. 31 (1993) 387–437. | DOI | MR | Zbl

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math. ETH Zürich, Birkhäuser (2005). | MR | Zbl

[3] H. Attouch, Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA (1984). | MR | Zbl

[4] A. Braides, Gamma-convergence for Beginners, vol. 22. Oxford University Press (2002). | DOI | MR | Zbl

[5] A. Braides, Local Minimization, Variational Evolution and Γ-Convergence. Vol. 2094 of Lect. Notes Math. Springer  (2012). | MR | Zbl

[6] A. Braides and L. Truskinovsky, Asymptotic expansions by γ-convergence. Continuum Mech. Therm. 20 (2008) 21–62. | DOI | MR | Zbl

[7] P.G. Ciarlet, The finite element method for elliptic problems, In Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl

[8] M. Colombo and M. Gobbino, Passing to the limit in maximal slope curves: from a regularized perona–malik equation to the total variation flow. Math. Models Methods Appl. Sci. 22 (2012) 1250017. | DOI | MR | Zbl

[9] G. Dal Maso An Introduction to Γ-Convergence, vol. 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993). | MR | Zbl

[10] S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal transportation. In vol. 413 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2014) 100–144. | MR | Zbl

[11] E. De Giorgi New problems on minimizing movements, in Boundary Value Problems for PDE and Applications, edited by C. Baiocchi and J.L. Lions. Masson (1993) 81–98. | MR | Zbl

[12] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187. | MR | Zbl

[13] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dellenergia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital 8 (1973) 391–411. | MR | Zbl

[14] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity. Nonlinear Anal. 9 (1985) 1401–1443. | DOI | MR | Zbl

[15] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Partial Differ. Equ. 39 (2010) 101–120. | DOI | MR | Zbl

[16] A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 281–330. | Numdam | MR | Zbl

[17] A. Mielke, On evolutionary Γ-convergence for gradient systems. Lect. Notes Appl. Math. Mech. Springer (2016). | DOI | MR

[18] A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381–410. | DOI | MR | Zbl

[19] A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calcul. Variat. Partial Differ. Equ. 31 (2008) 387–416. | DOI | MR | Zbl

[20] C. Ortner, Two variational techniques for the approximation of curves of maximal slope. Tech. Report NA-05/10, Oxford Comp. Lab. Report. Available at: http://web2.comlab.ox.ac.uk/oucl/publications/natr/na-05-10.html (2015).

[21] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564–614. | Numdam | MR | Zbl

[22] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672. | DOI | MR | Zbl

[23] S. Serfaty, Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31 (2011) 1427–1451. | DOI | MR | Zbl

[24] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Sup. Pisa 21 (1967) 657–699. | Numdam | MR | Zbl

Cité par Sources :