Action minimization and macroscopic interface motion under forced displacement
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 765-792.

We study an one dimensional model where an interface is the stationary solution of a mesoscopic non local evolution equation which has been derived by a microscopic stochastic spin system. Deviations from this evolution equation can be quantified by obtaining the large deviations cost functional from the underlying stochastic process. For such a functional, derived in a companion paper, we investigate the optimal way for a macroscopic interface to move from an initial to a final position distant by R within fixed time T. We find that for small values of R∕T the interface moves with a constant speed, while for larger values there appear nucleations of the other phase ahead of the front.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017021
Classification : 82C24, 49J
Mots-clés : Action minimization, large deviations functional, sharp-interface limit, non-local Allen−Cahn equation, nucleation
Birmpa, Panagiota 1 ; Tsagkarogiannis, Dimitrios 1

1
@article{COCV_2018__24_2_765_0,
     author = {Birmpa, Panagiota and Tsagkarogiannis, Dimitrios},
     title = {Action minimization and macroscopic interface motion under forced displacement},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {765--792},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017021},
     zbl = {1404.82043},
     mrnumber = {3816414},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017021/}
}
TY  - JOUR
AU  - Birmpa, Panagiota
AU  - Tsagkarogiannis, Dimitrios
TI  - Action minimization and macroscopic interface motion under forced displacement
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 765
EP  - 792
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017021/
DO  - 10.1051/cocv/2017021
LA  - en
ID  - COCV_2018__24_2_765_0
ER  - 
%0 Journal Article
%A Birmpa, Panagiota
%A Tsagkarogiannis, Dimitrios
%T Action minimization and macroscopic interface motion under forced displacement
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 765-792
%V 24
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017021/
%R 10.1051/cocv/2017021
%G en
%F COCV_2018__24_2_765_0
Birmpa, Panagiota; Tsagkarogiannis, Dimitrios. Action minimization and macroscopic interface motion under forced displacement. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 765-792. doi : 10.1051/cocv/2017021. http://www.numdam.org/articles/10.1051/cocv/2017021/

[1] G. Bellettini, A. De Masi and E. Presutti, Energy levels of a non local functional. J. Math. Phys. 46 (2005) 083302. | DOI | MR | Zbl

[2] G. Bellettini, A. De Masi and E. Presutti, Small, energy controlled perturbations of non local evolution equations. In preparation (2004).

[3] G. Bellettini, A. De Masi and E. Presutti, Tunnelling for nonlocal evolution equations. J. Nonlin. Math. Phys. 12 (2005) 50–63. | DOI | MR | Zbl

[4] L. Bertini, P. Buttà and A. Pisante, Stochastic Allen−Cahn equation with mobility. Preprint (2015). | arXiv | MR

[5] L. Bertini, P. Buttà and A. Pisante, Stochastic Allen−Cahn approximation of the mean curvature flow: large deviations upper bound. A. Arch. Rational Mech. Anal. 224 (2017) 659. | DOI | MR | Zbl

[6] L. Bertini, A. De Sole, D. Gabrielli, G. Jona−Lasinio and C. Landim, Macroscopic fluctuation theory. Rev. Mod. Phys. 87 (2015) 593. | DOI | MR

[7] L. Bertini, E. Presutti, B. Rüdiger and E. Saada, Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE. Teor. Veroyatnost. i Primenen. 38 (1993) 689–741, translation in Theory Probab. Appl. 38 (1993) 586–629. | MR | Zbl

[8] P. Birmpa, N. Dirr and D. Tsagkarogiannis, Large deviations for the macroscopic motion of an interface. preprint (2016). | MR

[9] F. Comets, Nucleation for a long range magnetic model. Ann. Inst. Henri Poincaré – Probab. Statist. 23 (1987) 135–178. | Numdam | MR | Zbl

[10] F. Comets and Th. Eisele, Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Commun. Math. Phys. 118 (1988) 531–567. | DOI | MR | Zbl

[11] A. De Masi, N. Dirr and E. Presutti, Interface instability under forced displacements. Ann. Inst. Henri Poincaré – AN 7 (2006) 471–511. | DOI | MR | Zbl

[12] A. De Masi, E. Olivieri and E. Presutti, Spectral properties of integral operators in problems of interface dynamics and metastability. Markov Process. Related Fields 4 (1998) 27–112. | MR | Zbl

[13] A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633–696. | DOI | MR | Zbl

[14] A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1013–1022. | DOI | MR | Zbl

[15] A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Uniqueness and global stability of the instanton in non local evolution equations. Rend. Mat. Appl. 14 (1994) 693–723. | MR | Zbl

[16] W. E.W Ren and E. Vanden−Eijnden, Minimum action method for the study of rare events. Commun. Pure. Appl. Math. LVII (2004) 0001–0020. | MR | Zbl

[17] W. Faris and G. Jona−Lasinio, Large fluctuations for a nonlinear heat equation with noise. J. Phys. A: Math. Gen. 15 (1982) 3025–3055. | DOI | MR | Zbl

[18] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems. Springer Verlag 260 (1984). | DOI | MR | Zbl

[19] P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (1977) 435–479. | DOI

[20] R.V. Kohn, F. Otto, M.G. Reznikoff and E. Vanden−Eijnden, Action minimization and sharp-interface limits for the stochastic Allen−Cahn equation.Commun. Pure Appl. Math. 60 (2007) 393–438. | DOI | MR | Zbl

[21] R.V. Kohn, M.G. Reznikoff and Y. Tonegawa, Sharp-interface limit of the Allen−Cahn action functional in one space dimension. Calc. Var. PDE 25 (2006) 503–534. | DOI | MR | Zbl

[22] J.-C. Mourrat and H. Weber, Convergence of the two-dimensional dynamic Ising-Kac model to Φ42. Commun. Pure Appl. Math. onlinefirst (2014). | MR

[23] L. Mugnai and M. Röger, The Allen−Cahn action functional in higher dimensions, Interfaces Free Bound. 10 (2008) 45–78. | DOI | MR | Zbl

[24] E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer (2000). | MR | Zbl

Cité par Sources :