In the context of infinitesimal strain plasticity with hardening, we derive a stochastic homogenization result. We assume that the coefficients of the equation are random functions: elasticity tensor, hardening parameter and flow-rule function are given through a dynamical system on a probability space. A parameter denotes the typical length scale of oscillations. We derive effective equations that describe the behavior of solutions in the limit . The homogenization procedure is based on the fact that stochastic coefficients “allow averaging”: For one representative volume element, a strain evolution induces a stress evolution . Once the hysteretic evolution law is justified for averages, we obtain that the macroscopic limit equation is given by .
Mots clés : Small strain plasticity, stochastic homogenization
@article{COCV_2018__24_1_153_0, author = {Heida, Martin and Schweizer, Ben}, title = {Stochastic homogenization of plasticity equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {153--176}, publisher = {EDP-Sciences}, volume = {24}, number = {1}, year = {2018}, doi = {10.1051/cocv/2017015}, mrnumber = {3764138}, zbl = {1393.74014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017015/} }
TY - JOUR AU - Heida, Martin AU - Schweizer, Ben TI - Stochastic homogenization of plasticity equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 153 EP - 176 VL - 24 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017015/ DO - 10.1051/cocv/2017015 LA - en ID - COCV_2018__24_1_153_0 ER -
%0 Journal Article %A Heida, Martin %A Schweizer, Ben %T Stochastic homogenization of plasticity equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 153-176 %V 24 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017015/ %R 10.1051/cocv/2017015 %G en %F COCV_2018__24_1_153_0
Heida, Martin; Schweizer, Ben. Stochastic homogenization of plasticity equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 153-176. doi : 10.1051/cocv/2017015. http://www.numdam.org/articles/10.1051/cocv/2017015/
H.-D. Alber, Initial-boundary value problems for constitutive equations with internal variables. Materials With Memory, Vol. 1682 of Lect. Notes Math. Springer Verlag, Berlin (1998). | MR | Zbl
Evolving microstructure and homogenization. Contin. Mech. Thermodyn. 12 (2000) 235–286. | DOI | MR | Zbl
,Justification of homogenization in viscoplasticity: From convergence on two scales to an asymptotic solution in . J. Multiscale Model. 1 (2009) 223–244. | DOI
and ,P.G. Ciarlet, The finite element method for elliptic problems, Reprint of the 1978 original. Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl
Nonlinear stochastic homogenization. Annali di Matematica Pura ed Applicata 144 (1986) 347–389. | DOI | MR | Zbl
and ,On periodic homogenization in perfect elasto-plasticity. J. Eur. Math. Soc. 16 (2014) 409–461. | DOI | MR | Zbl
and ,W. Han and B.D. Reddy, Mathematical theory and numerical analysis. Plasticity, Vol. 9 of Interdisciplinary Appl. Math. Springer-Verlag, New York (1999). | MR | Zbl
Homgenization in gradient plasticity. Math. Models Methods Appl. Sci. 21 (2011) 1651–1684. | DOI | MR | Zbl
,Non-periodic homogenization of infinitesimal strain plasticity equations. ZAMM Z. Angew. Math. Mech. 96 (2016) 5–23. | DOI | MR | Zbl
and ,V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer (1994). | MR
The averaging of random operators. Mat. Sb. (N.S.) 109 (1979) 188–202. | MR | Zbl
,-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. | DOI | MR | Zbl
, and ,Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007) 642–668. | DOI | MR | Zbl
and ,Homogenization of nonconvex integral functionals and cellular elastic materials. Archive for Rational Mech. Anal. 99 (1987) 189–212. | DOI | MR | Zbl
,F. Murat and L. Tartar, H-convergence. In Topics in the Mathematical Modelling of Composite Materials. Springer (1997) 21–43. | MR | Zbl
Homogenization in viscoplasticity. SIAM J. Math. Anal. 39 (2007) 236–262. | DOI | MR | Zbl
,G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients. In {Random fields, Vol. I, II (Esztergom 1979), Vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam New York (1981) 835--873. | MR | Zbl
R.~Rockafellar and R.-B. Wets, Variational Analysis. Springer (1998). | MR | Zbl
Homogenization of the Prager model in one-dimensional plasticity. Contin. Mech. Thermodyn. 20 (2009) 459–477. | DOI | MR | Zbl
,Periodic homogenization of the Prandtl-Reuss model with hardening. J. Multiscale Modell. 2 (2010) 69–106. | DOI
and .The needle problem approach to non-periodic homogenization. Netw. Heterog. Media 6 (2011) 755–781. | DOI | MR | Zbl
and ,Homogenization of plasticity equations with two-scale convergence methods. Appl. Anal. 94 (2015) 376–399. | DOI | MR | Zbl
and .On homogenization of elasto-plasticity. J. Phys.: Conf. Ser. 22 (2005) 222–234.
,Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18 (2006) 223–252. | DOI | MR | Zbl
,Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1363–1401. | DOI | MR | Zbl
,Homogenization of random singular structures and random measures. Izv. Math. 70 (2006) 19–67. | DOI | MR | Zbl
and ,Cité par Sources :