Shape optimization via a levelset and a Gauss-Newton method
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 3.

In the context of shape optimization via level-set methods, we propose a general framework for a Gauss-Newton method to optimize quadratic functionals. Our approach provides a natural extension of the shape derivative as a vector field defined in the whole working domain. We implement and discuss this method in two cases: first a least-square error minimization reminiscent of the Electrical Impedance Tomography problem, and second the compliance problem with volume constraints.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017014
Classification : 49Q10, 49M15, 49M29, 74P05, 74P10, 74P20
Mots-clés : Shape optimization, shape derivative, second order method, level-set method
Fehrenbach, Jérôme 1 ; de Gournay, Frédéric 1

1
@article{COCV_2019__25__A3_0,
     author = {Fehrenbach, J\'er\^ome and de Gournay, Fr\'ed\'eric},
     title = {Shape optimization via a levelset and a {Gauss-Newton} method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017014},
     mrnumber = {3943357},
     zbl = {1437.49058},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017014/}
}
TY  - JOUR
AU  - Fehrenbach, Jérôme
AU  - de Gournay, Frédéric
TI  - Shape optimization via a levelset and a Gauss-Newton method
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017014/
DO  - 10.1051/cocv/2017014
LA  - en
ID  - COCV_2019__25__A3_0
ER  - 
%0 Journal Article
%A Fehrenbach, Jérôme
%A de Gournay, Frédéric
%T Shape optimization via a levelset and a Gauss-Newton method
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017014/
%R 10.1051/cocv/2017014
%G en
%F COCV_2019__25__A3_0
Fehrenbach, Jérôme; de Gournay, Frédéric. Shape optimization via a levelset and a Gauss-Newton method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 3. doi : 10.1051/cocv/2017014. http://www.numdam.org/articles/10.1051/cocv/2017014/

[1] L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete Contin. Dyn. Systems Series B 8 (2007) 389. | MR | Zbl

[2] L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optimiz. 47 (2008) 1556–1590. | DOI | MR | Zbl

[3] G. Allaire, Shape optimization by the homogenization method. Vol. 146. Springer Science & Business Media (2012). | MR | Zbl

[4] G. Allaire, E. Cancès and J.-L. Vié, Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Calcolo 49 (2012) 193–219.

[5] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl

[6] G. Allaire and M. Schoenauer, Conception optimale de structures. Vol. 58. Springer (2007). | MR | Zbl

[7] M.Ph. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71 (1988) 197–224. | DOI | MR | Zbl

[8] L. Borcea, Electrical impedance tomography. Inverse Problems 18 (2002) R99. | DOI | MR | Zbl

[9] V. Braibant and C. Fleury, Shape optimal design using B- splines. Comput. Methods Appl. Mech. Eng. 44 (1984) 247–267. | DOI | Zbl

[10] A.P. Calderón, On an inverse boundary value problem. Comput. Appl. Math. 25 (2006) 133–138. | DOI | MR | Zbl

[11] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. Real Acad. Ciencias Exactas, Fis. Nat. Serie A: Mat. 96 (2002) 95–122. | MR | Zbl

[12] M. Dambrine and M. Pierre, About stability of equilibrium shapes. ESAIM: M2AN 34 (2000) 811–834. | DOI | Numdam | MR | Zbl

[13] Ch. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49 (2012) 193–219. | DOI | MR | Zbl

[14] F. De Gournay Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optimiz. 45 (2006) 343–367. | DOI | MR | Zbl

[15] K. Eppler and Helmut Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cibern. 34 (2005) 203. | MR | Zbl

[16] J. Fehrenbach, M. Masmoudi, R. Souchon and Ph. Trompette, Detection of small inclusions by elastography. Inverse Problems 22 (2006) 1055. | DOI | MR | Zbl

[17] S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optimiz. 39 (2001) 1756–1778. | DOI | MR | Zbl

[18] J. Hadamard, Sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoire couronnéen 1907 par l’académie: Prix vaillant, mémoires présentés par divers savants à l’académie des sciences 33 (1908). Oeuvres de Jacques Hadamard 2 (1907) 515–629. | JFM

[19] A. Henrot and M. Pierre, Variation et optimisation de forme. Springer (2005). | DOI | MR

[20] H. Kasumba and K. Kunisch, On computation of the shape Hessian of the cost functional without shape sensitivity of the state variable. J. Optimiz. Theory Appl. 162 (2014) 779–804. | DOI | MR | Zbl

[21] F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Université Pierre et Marie Curie (Paris VI), Publication du Laboratoire d’Analyse Numérique (1976).

[22] A. Novruzi and J.R. Roche, Newton’s method in shape optimisation: a three-dimensional case. BIT Numer. Math. 40 (2000) 102–120. | DOI | MR | Zbl

[23] S. Osher and J.A. Sethian, Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl

[24] J.R. Roche, Adaptative Newton-like method for shape optimization. Control and Cybernetics 34 (2005) 363–377. | MR | Zbl

[25] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. | DOI | MR | Zbl

[26] M. Schweiger, S.R. Arridge and I. Nissilä. Gauss–Newton method for image reconstruction in diffuse optical tomography. Physics in medicine and biology 50 (2005) 2365. | DOI

[27] J.A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge University Press (1999). | MR | Zbl

[28] J. Simon, Second variations for domain optimization problems. Control and estimation of distributed parameter systems, edited by F. Kappel, K. Kunish et W. Schappacher. Int. Ser. Numer. Math. 91 (1989) 361–378. | MR | Zbl

[29] J. Sokolowski and A. Zochowski, Topological derivatives for elliptic problems. Inverse Problems 15 (1999) 123. | DOI | MR | Zbl

[30] A. Tarantola, Inverse problem theory and methods for model parameter estimation. SIAM (2005). | DOI | MR | Zbl

[31] Ph. Wolfe, Convergence conditions for ascent methods. SIAM Rev. 11 (1969) 226–235. | DOI | MR | Zbl

Cité par Sources :