In the context of shape optimization via level-set methods, we propose a general framework for a Gauss-Newton method to optimize quadratic functionals. Our approach provides a natural extension of the shape derivative as a vector field defined in the whole working domain. We implement and discuss this method in two cases: first a least-square error minimization reminiscent of the Electrical Impedance Tomography problem, and second the compliance problem with volume constraints.
Accepté le :
DOI : 10.1051/cocv/2017014
Mots-clés : Shape optimization, shape derivative, second order method, level-set method
@article{COCV_2019__25__A3_0, author = {Fehrenbach, J\'er\^ome and de Gournay, Fr\'ed\'eric}, title = {Shape optimization via a levelset and a {Gauss-Newton} method}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2017014}, mrnumber = {3943357}, zbl = {1437.49058}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017014/} }
TY - JOUR AU - Fehrenbach, Jérôme AU - de Gournay, Frédéric TI - Shape optimization via a levelset and a Gauss-Newton method JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017014/ DO - 10.1051/cocv/2017014 LA - en ID - COCV_2019__25__A3_0 ER -
%0 Journal Article %A Fehrenbach, Jérôme %A de Gournay, Frédéric %T Shape optimization via a levelset and a Gauss-Newton method %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017014/ %R 10.1051/cocv/2017014 %G en %F COCV_2019__25__A3_0
Fehrenbach, Jérôme; de Gournay, Frédéric. Shape optimization via a levelset and a Gauss-Newton method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 3. doi : 10.1051/cocv/2017014. http://www.numdam.org/articles/10.1051/cocv/2017014/
[1] Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete Contin. Dyn. Systems Series B 8 (2007) 389. | MR | Zbl
, , and ,[2] On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optimiz. 47 (2008) 1556–1590. | DOI | MR | Zbl
, and ,[3] Shape optimization by the homogenization method. Vol. 146. Springer Science & Business Media (2012). | MR | Zbl
,[4] Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Calcolo 49 (2012) 193–219.
, and ,[5] Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl
, and ,[6] Conception optimale de structures. Vol. 58. Springer (2007). | MR | Zbl
and ,[7] Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71 (1988) 197–224. | DOI | MR | Zbl
and ,[8] Electrical impedance tomography. Inverse Problems 18 (2002) R99. | DOI | MR | Zbl
,[9] Shape optimal design using B- splines. Comput. Methods Appl. Mech. Eng. 44 (1984) 247–267. | DOI | Zbl
and ,[10] On an inverse boundary value problem. Comput. Appl. Math. 25 (2006) 133–138. | DOI | MR | Zbl
,[11] On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. Real Acad. Ciencias Exactas, Fis. Nat. Serie A: Mat. 96 (2002) 95–122. | MR | Zbl
,[12] About stability of equilibrium shapes. ESAIM: M2AN 34 (2000) 811–834. | DOI | Numdam | MR | Zbl
and ,[13] Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49 (2012) 193–219. | DOI | MR | Zbl
and ,[14] Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optimiz. 45 (2006) 343–367. | DOI | MR | Zbl
[15] A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cibern. 34 (2005) 203. | MR | Zbl
and ,[16] Detection of small inclusions by elastography. Inverse Problems 22 (2006) 1055. | DOI | MR | Zbl
, , and ,[17] The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optimiz. 39 (2001) 1756–1778. | DOI | MR | Zbl
, and ,[18] Sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoire couronnéen 1907 par l’académie: Prix vaillant, mémoires présentés par divers savants à l’académie des sciences 33 (1908). Oeuvres de Jacques Hadamard 2 (1907) 515–629. | JFM
,[19] Variation et optimisation de forme. Springer (2005). | DOI | MR
and ,[20] On computation of the shape Hessian of the cost functional without shape sensitivity of the state variable. J. Optimiz. Theory Appl. 162 (2014) 779–804. | DOI | MR | Zbl
and ,[21] Sur le contrôle optimal par un domaine géométrique. Université Pierre et Marie Curie (Paris VI), Publication du Laboratoire d’Analyse Numérique (1976).
and ,[22] Newton’s method in shape optimisation: a three-dimensional case. BIT Numer. Math. 40 (2000) 102–120. | DOI | MR | Zbl
and ,[23] Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl
and ,[24] Adaptative Newton-like method for shape optimization. Control and Cybernetics 34 (2005) 363–377. | MR | Zbl
,[25] GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. | DOI | MR | Zbl
and ,[26] Gauss–Newton method for image reconstruction in diffuse optical tomography. Physics in medicine and biology 50 (2005) 2365. | DOI
, and[27] Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge University Press (1999). | MR | Zbl
,[28] Second variations for domain optimization problems. Control and estimation of distributed parameter systems, edited by , et . Int. Ser. Numer. Math. 91 (1989) 361–378. | MR | Zbl
,[29] Topological derivatives for elliptic problems. Inverse Problems 15 (1999) 123. | DOI | MR | Zbl
and ,[30] Inverse problem theory and methods for model parameter estimation. SIAM (2005). | DOI | MR | Zbl
,[31] Convergence conditions for ascent methods. SIAM Rev. 11 (1969) 226–235. | DOI | MR | Zbl
,Cité par Sources :