Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 479-494.

In this paper we revisit the anisotropic isoperimetric and the Brunn−Minkowski inequalities for convex sets. The best known constant C(n) = Cn7 depending on the space dimension n in both inequalities is due to Segal [A. Segal, Lect. Notes Math., Springer, Heidelberg 2050 (2012) 381–391]. We improve that constant to Cn6 for convex sets and to Cn5 for centrally symmetric convex sets. We also conjecture, that the best constant in both inequalities must be of the form Cn2, i.e., quadratic in n. The tools are the Brenier’s mapping from the theory of mass transportation combined with new sharp geometric-arithmetic mean and some algebraic inequalities plus a trace estimate by Figalli, Maggi and Pratelli.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017004
Classification : 52A20, 52A38, 52A39
Mots-clés : Brunn–Minkowski inequality, wulff inequality, isoperimetric inequality, convex bodies
Harutyunyan, Davit 1

1
@article{COCV_2018__24_2_479_0,
     author = {Harutyunyan, Davit},
     title = {Quantitative anisotropic isoperimetric and {Brunn\ensuremath{-}Minkowski} inequalities for convex sets with improved defect estimates},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {479--494},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017004},
     zbl = {1406.52019},
     mrnumber = {3816402},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017004/}
}
TY  - JOUR
AU  - Harutyunyan, Davit
TI  - Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 479
EP  - 494
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017004/
DO  - 10.1051/cocv/2017004
LA  - en
ID  - COCV_2018__24_2_479_0
ER  - 
%0 Journal Article
%A Harutyunyan, Davit
%T Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 479-494
%V 24
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017004/
%R 10.1051/cocv/2017004
%G en
%F COCV_2018__24_2_479_0
Harutyunyan, Davit. Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 479-494. doi : 10.1051/cocv/2017004. http://www.numdam.org/articles/10.1051/cocv/2017004/

[1] K. Ball, An elementary introduction to monotone transportation. Geometric Aspects of Functional Analysis (Israel Seminar 2002–2003). Lect. Notes in Math. Springer, Berlin (2004) 41–52 | MR | Zbl

[2] T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren. Math. Ann. 91 (1924) 252–268 | DOI | JFM | MR

[3] F. Bernstein, Uber die isoperimetrische Eigenschaft des Kreises auf der Kügeloberfläche und in der Ebene. Math. Ann. 60 (1905) 117–136 | DOI | JFM | MR

[4] Y. Brenier, Décomposition polaire et réarrangement monotone de champs de vecteurs. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 805–808 | MR | Zbl

[5] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417 | DOI | MR | Zbl

[6] J.E. Brothers and F. Morgan, The isoperimetric theorem for general integrands. Michigan Math. J. 41 (1994) 419–431 | DOI | MR | Zbl

[7] Y.D. Burago and V.A. Zalgaller, Geometric inequalities. Springer, New York (1988). Russian original: 1980 | DOI | MR | Zbl

[8] L.A. Caffarelli, The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992) 99–104 | DOI | MR | Zbl

[9] L.A. Caffarelli, Boundary regularity of maps with convex potentials, II. Ann. Math. (2) 144 (1996) 453–496 | DOI | MR | Zbl

[10] E.A. Carlen and F. Maggi, Stability for the Brunn−Minkowski and Riesz rearrangement inequalities, with applications to Gaussian concentration and finite range non-local isoperimetry. Preprint (2015) | arXiv | DOI | MR | Zbl

[11] B. Dacorogna and C.E. Pfister, Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. 71 (1992) 97–118 | MR | Zbl

[12] S. Dar, A Brunn−Minkowski-Type inequality. Geom. Dedicata 77 (1999) 1–9, MR 1706512, Zbl 0938.52008 | DOI | MR | Zbl

[13] L. Esposito, N. Fusco and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sci. Norm. Super. Pisa Cl. Sci. 4 (2005) 619–651 | Numdam | MR | Zbl

[14] A. Figalli and D. Jerison, Quantitative stability for the Brunn−Minkowski inequality. Preprint arXiv:1502006513 (2014) | MR

[15] A. Figalli and F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211 | DOI | MR | Zbl

[16] A. Figalli, F. Maggi and A. Pratelli, A refined Brunn−Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 2511–2519 | DOI | Numdam | MR | Zbl

[17] H. Federer, Geometric measure theory. Die Grundlehren der Mathematischen Wissenschaften, Band. Springer Verlag New York Inc., New York 153 (1969) xiv+676 pp | MR | Zbl

[18] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991) 125–136 | DOI | MR | Zbl

[19] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in Rn. Trans. Amer. Math. Soc. 314 (1989) 619–38 | MR | Zbl

[20] N. Fusco,F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–80 | DOI | MR | Zbl

[21] R.J. Gardner, The Brunn−Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002) 355–405 | DOI | MR | Zbl

[22] H. Groemer, Stability of geometric inequalities, Handbook of Convexity, edited by P.M. Gruber and J.M. Wills. North Holland Amsterdam (1993) 125–150 | MR | Zbl

[23] H. Groemer, On the Brunn−Minkowski theorem. Geom. Dedicata 27 (1988) 357–371 | DOI | MR | Zbl

[24] H. Hadwiger and D. Ohmann, Brunn−Minkowskischer Satz und Isoperimetrie. Math. Zeit. 66 (1956) 1–8 | DOI | MR | Zbl

[25] R.R. Hall, A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428 (1992) 161–176 | MR | Zbl

[26] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press Cambridge (1959) | MR | Zbl

[27] R. Henstock and A.M. Macbeath, On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik. Proc. London Math. Soc. 3 (1953) 182–194 | DOI | MR | Zbl

[28] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer, 2nd edition (1990) | MR | Zbl

[29] F. John, An inequality for convex bodies. Univ. Kentucky Research Club Bull. 8 (1942) 8–11 | MR | Zbl

[30] H. Knothe, Contributions to the theory of convex bodies. Michigan Math. J. 4 (1957) 39–52 | DOI | MR | Zbl

[31] R.J. Mccann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323 | DOI | MR | Zbl

[32] R.J. Mccann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179 | DOI | MR | Zbl

[33] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lect. Notes Math. Springer Verlag, Berlin 1200 (1986). viii+156 pp | MR | Zbl

[34] J. Van Schaftingen, Anisotropic symmetrization. Ann. Inst. Henri Poincaré Anal. Non Lineaire 23 (2006) 539–565 | DOI | Numdam | MR | Zbl

[35] A. Segal, Remark on stability of Brunn−Minkowski and isoperimetric inequalities for convex bodies. Geometric aspects of functional analysis, Lect. Notes Math. Springer, Heidelberg 2050 (2012) 381–391 | DOI | MR | Zbl

[36] Schneider, R. Convex bodies: The Brunn−Minkowski theory. In Vol. 44 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge (1993) | MR | Zbl

[37] C. Villani, Topics in optimal transportation, In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). xvi+370 pp | MR | Zbl

[38] D. Xi andG. Leng, Dar’s conjecture and the log-Brunn−Minkowski inequality. J. Differ. Geometry 103 (2016), 145–189 | MR | Zbl

[39] G. Wulff,2016 Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflächen. Z. Kristallogr. 34 449–530 | DOI

Cité par Sources :