In this paper we revisit the anisotropic isoperimetric and the Brunn−Minkowski inequalities for convex sets. The best known constant C(n) = Cn7 depending on the space dimension n in both inequalities is due to Segal [A. Segal, Lect. Notes Math., Springer, Heidelberg 2050 (2012) 381–391]. We improve that constant to Cn6 for convex sets and to Cn5 for centrally symmetric convex sets. We also conjecture, that the best constant in both inequalities must be of the form Cn2, i.e., quadratic in n. The tools are the Brenier’s mapping from the theory of mass transportation combined with new sharp geometric-arithmetic mean and some algebraic inequalities plus a trace estimate by Figalli, Maggi and Pratelli.
Accepté le :
DOI : 10.1051/cocv/2017004
Mots clés : Brunn–Minkowski inequality, wulff inequality, isoperimetric inequality, convex bodies
@article{COCV_2018__24_2_479_0, author = {Harutyunyan, Davit}, title = {Quantitative anisotropic isoperimetric and {Brunn\ensuremath{-}Minkowski} inequalities for convex sets with improved defect estimates}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {479--494}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017004}, zbl = {1406.52019}, mrnumber = {3816402}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017004/} }
TY - JOUR AU - Harutyunyan, Davit TI - Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 479 EP - 494 VL - 24 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017004/ DO - 10.1051/cocv/2017004 LA - en ID - COCV_2018__24_2_479_0 ER -
%0 Journal Article %A Harutyunyan, Davit %T Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 479-494 %V 24 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017004/ %R 10.1051/cocv/2017004 %G en %F COCV_2018__24_2_479_0
Harutyunyan, Davit. Quantitative anisotropic isoperimetric and Brunn−Minkowski inequalities for convex sets with improved defect estimates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 479-494. doi : 10.1051/cocv/2017004. http://www.numdam.org/articles/10.1051/cocv/2017004/
[1] An elementary introduction to monotone transportation. Geometric Aspects of Functional Analysis (Israel Seminar 2002–2003). Lect. Notes in Math. Springer, Berlin (2004) 41–52 | MR | Zbl
,[2] Über die isoperimetrische Defizit ebener Figuren. Math. Ann. 91 (1924) 252–268 | DOI | JFM | MR
,[3] Uber die isoperimetrische Eigenschaft des Kreises auf der Kügeloberfläche und in der Ebene. Math. Ann. 60 (1905) 117–136 | DOI | JFM | MR
,[4] Décomposition polaire et réarrangement monotone de champs de vecteurs. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 805–808 | MR | Zbl
,[5] Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417 | DOI | MR | Zbl
,[6] The isoperimetric theorem for general integrands. Michigan Math. J. 41 (1994) 419–431 | DOI | MR | Zbl
and ,[7] Geometric inequalities. Springer, New York (1988). Russian original: 1980 | DOI | MR | Zbl
and ,[8] The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992) 99–104 | DOI | MR | Zbl
,[9] Boundary regularity of maps with convex potentials, II. Ann. Math. (2) 144 (1996) 453–496 | DOI | MR | Zbl
,[10] Stability for the Brunn−Minkowski and Riesz rearrangement inequalities, with applications to Gaussian concentration and finite range non-local isoperimetry. Preprint (2015) | arXiv | DOI | MR | Zbl
and ,[11] Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. 71 (1992) 97–118 | MR | Zbl
and ,[12] A Brunn−Minkowski-Type inequality. Geom. Dedicata 77 (1999) 1–9, MR 1706512, Zbl 0938.52008 | DOI | MR | Zbl
,[13] A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sci. Norm. Super. Pisa Cl. Sci. 4 (2005) 619–651 | Numdam | MR | Zbl
, and ,[14] Quantitative stability for the Brunn−Minkowski inequality. Preprint arXiv:1502006513 (2014) | MR
and ,[15] A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211 | DOI | MR | Zbl
and and ,[16] A refined Brunn−Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 2511–2519 | DOI | Numdam | MR | Zbl
, and ,[17] Geometric measure theory. Die Grundlehren der Mathematischen Wissenschaften, Band. Springer Verlag New York Inc., New York 153 (1969) xiv+676 pp | MR | Zbl
,[18] A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991) 125–136 | DOI | MR | Zbl
and ,[19] Stability in the isoperimetric problem for convex or nearly spherical domains in Rn. Trans. Amer. Math. Soc. 314 (1989) 619–38 | MR | Zbl
,[20] The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–80 | DOI | MR | Zbl
, and ,[21] The Brunn−Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002) 355–405 | DOI | MR | Zbl
,[22] Stability of geometric inequalities, Handbook of Convexity, edited by and . North Holland Amsterdam (1993) 125–150 | MR | Zbl
,[23] On the Brunn−Minkowski theorem. Geom. Dedicata 27 (1988) 357–371 | DOI | MR | Zbl
,[24] Brunn−Minkowskischer Satz und Isoperimetrie. Math. Zeit. 66 (1956) 1–8 | DOI | MR | Zbl
and ,[25] A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428 (1992) 161–176 | MR | Zbl
,[26] Inequalities. Cambridge University Press Cambridge (1959) | MR | Zbl
, and ,[27] On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik. Proc. London Math. Soc. 3 (1953) 182–194 | DOI | MR | Zbl
and ,[28] The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer, 2nd edition (1990) | MR | Zbl
,[29] An inequality for convex bodies. Univ. Kentucky Research Club Bull. 8 (1942) 8–11 | MR | Zbl
,[30] Contributions to the theory of convex bodies. Michigan Math. J. 4 (1957) 39–52 | DOI | MR | Zbl
,[31] Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323 | DOI | MR | Zbl
,[32] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179 | DOI | MR | Zbl
,[33] Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lect. Notes Math. Springer Verlag, Berlin 1200 (1986). viii+156 pp | MR | Zbl
and ,[34] Anisotropic symmetrization. Ann. Inst. Henri Poincaré Anal. Non Lineaire 23 (2006) 539–565 | DOI | Numdam | MR | Zbl
,[35] Remark on stability of Brunn−Minkowski and isoperimetric inequalities for convex bodies. Geometric aspects of functional analysis, Lect. Notes Math. Springer, Heidelberg 2050 (2012) 381–391 | DOI | MR | Zbl
,[36] Convex bodies: The Brunn−Minkowski theory. In Vol. 44 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge (1993) | MR | Zbl
[37] Topics in optimal transportation, In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). xvi+370 pp | MR | Zbl
,[38] Dar’s conjecture and the log-Brunn−Minkowski inequality. J. Differ. Geometry 103 (2016), 145–189 | MR | Zbl
and ,[39] Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflächen. Z. Kristallogr. 34 449–530 | DOI
,2016Cité par Sources :