Linear quadratic control problems of stochastic Volterra integral equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1849-1879.

This paper is concerned with linear quadratic control problems of stochastic differential equations (SDEs, in short) and stochastic Volterra integral equations (SVIEs, in short). Notice that for stochastic systems, the control weight in the cost functional is allowed to be indefinite. This feature is demonstrated here only by open-loop optimal controls but not limited to closed-loop optimal controls in the literature. As to linear quadratic problem of SDEs, some examples are given to point out the issues left by existing papers, and new characterizations of optimal controls are obtained in different manners. For the study of SVIEs with deterministic coefficients, a class of stochastic Fredholm−Volterra integral equations is introduced to replace conventional forward-backward SVIEs. Eventually, instead of using convex variation, we use spike variation to obtain some additional optimality conditions of linear quadratic problems for SVIEs.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017002
Classification : 93E20, 49N10, 45D05
Mots-clés : Stochastic Volterra integral equations, stochastic Fredholm−Volterra integral equations, stochastic linear quadratic problems, spike variation
Wang, Tianxiao 1

1
@article{COCV_2018__24_4_1849_0,
     author = {Wang, Tianxiao},
     title = {Linear quadratic control problems of stochastic {Volterra} integral equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1849--1879},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017002},
     zbl = {1415.93296},
     mrnumber = {3922428},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017002/}
}
TY  - JOUR
AU  - Wang, Tianxiao
TI  - Linear quadratic control problems of stochastic Volterra integral equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1849
EP  - 1879
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017002/
DO  - 10.1051/cocv/2017002
LA  - en
ID  - COCV_2018__24_4_1849_0
ER  - 
%0 Journal Article
%A Wang, Tianxiao
%T Linear quadratic control problems of stochastic Volterra integral equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1849-1879
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017002/
%R 10.1051/cocv/2017002
%G en
%F COCV_2018__24_4_1849_0
Wang, Tianxiao. Linear quadratic control problems of stochastic Volterra integral equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1849-1879. doi : 10.1051/cocv/2017002. http://www.numdam.org/articles/10.1051/cocv/2017002/

[1] E. Alòs and D. Nualart, Anticipating stochastic Volterra equations. Stochastic Process. Appl. 72 (1997) 73–95. | DOI | MR | Zbl

[2] S. Belbas and W. Schmidt, Optimal control of Volterra equations with impulses. Appl. Math. Comput. 166 (2005) 696–723. | MR | Zbl

[3] M. Berger and V. Mizel, Volterra equations with Itô integrals, I, II, J. Integral Equ. 2 (1980) 187–245, 319–337. | MR | Zbl

[4] M. Berger and V. Mizel, An extension of the stochastic integral. Ann. Probab. 10 (1982) 435–450. | DOI | MR | Zbl

[5] D. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation. J. Optim. Theory Appl. 54 (1987) 43–61. | DOI | MR

[6] S. Chen, Riccati equations arising in infinite dimensional optimal control problems. Control Theory Appl. 2 (1985) 64–72 (in Chinese). | MR

[7] S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefnite control weight costs. SIAM J. Control Optim. 36 (1998) 1685–1702. | DOI | MR | Zbl

[8] S. Chen and J. Yong, A linear quadratic optimal control problems for stochastic Volterra integral equations, in Control Theory and Related Topics: In Memory of Prof. Xunjing Li, edited by S. Tang and J. Yong. Word Scientific Publishing Company (2007) 44–66. | MR | Zbl

[9] D. Duffie and C. Huang, Stochastic production-exchange equilibria. Vol. 974. Research paper, Graduate School of Business, Stanford University, Stanford (1986).

[10] R. Hartl, Optimal dynamic advertising policies for hereditary processes. J. Optim. Theory Appl. 43 (1984) 51–72. | DOI | MR | Zbl

[11] Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Related Fields 103 (1995) 273–283. | DOI | MR | Zbl

[12] M. Kamien and E. Muller, Optimal control with integral state equations. Rev. Econ. Stud. 43 (1976) 469–473. | DOI | Zbl

[13] X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhaüser (1995). | DOI | MR | Zbl

[14] J. Lin, Adapted solution of backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20 (2002) 165–183. | DOI | MR | Zbl

[15] J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Related Fields 98 (1994) 339–359. | DOI | MR | Zbl

[16] L. Mou and J. Yong, Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. J. Ind. Manag. Optim. 2 (2006) 93–115. | MR | Zbl

[17] E. Pardoux and P. Protter, Stochastic Volterra equations with anticipating coefficients. Ann. Probab. 18 (1990) 1635–1655. | DOI | MR | Zbl

[18] A.J. Pritchard and Y. You, Causal feedback optimal control for Volterra integral equations. SIAM J. Control Optim. 34 (1996) 1874–1890. | DOI | MR | Zbl

[19] P. Protter, Volterra equations driven by semimartingales. Ann. Probab. 13 (1985) 519–530. | MR | Zbl

[20] Y. Shi, T. Wang and J. Yong, Mean field backward stochastic Volterra integral equations. Discrete. Cont. Dyn. Ser-B. 18 (2013) 1929–1967. | MR | Zbl

[21] Y. Shi, T. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations. Math. Control Relat. Fields 5 (2015) 613–649. | DOI | MR | Zbl

[22] J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points. SIAM J. Control Optim. 52 (2014) 4082–121. | DOI | MR | Zbl

[23] V. Vinokurov, Optimal control of processes described by integral equations, I, II, III, Izv. Vysš. Učebn. Zaved. Matematika 7 21–33; 8 16–23; 9 16–25. (in Russian) English transl. in SIAM J. Control 7 (1967) 324–336, 337 –345, 346–355. | MR | Zbl

[24] T. Wang and Y. Shi, Symmetrical solutions of backward stochastic Volterra integral equations and applications. Discrete Contin. Dyn. Syst. B. 14 (2010) 251–274. | MR | Zbl

[25] T. Wang and Y. Shi, Linear quadratic stochastic integral games and related topics. Sci China Math. 58 (2015) 2405–2420. | DOI | MR | Zbl

[26] J. Yong, Backward stochastic Volterra integral equations and some related problems. Stochastic Process Appl. 116 (2006) 779–795. | DOI | MR | Zbl

[27] J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equation. Probab. Theory Related Fields 142 (2008) 21–77. | DOI | MR | Zbl

[28] J. Yong and X. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations. Springer Verlag, New York (1999). | DOI | MR | Zbl

[29] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. J. Funct. Anal. 258 (2010) 1361–1425. | DOI | MR | Zbl

Cité par Sources :