The regularity of solutions to some variational problems, including the p-Laplace equation for 2p<3
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553.

We consider the higher differentiability of solutions to the problem of minimizing

Ω[L(v(x))+g(x,v(x))]dxonu0+W01,p(Ω)
where L(|ξ|)=1/p|ξ|p and u0W1,p(Ω). We show that, for 2p<3, under suitable regularity assumptions on g, there exists a solution u to the Euler–Lagrange equation associated to the minimization problem, such that
uWloc1,2().
In particular, for g(x,u)=f(x)u with fW1,2(Ω) and 2p<3, any W1,p(Ω) weak solution to the equation
div(|u|p-2u)=f
is in W2,2loc(Ω).

DOI : 10.1051/cocv/2016064
Classification : 49K10
Mots-clés : Regularity of solutions to variational problems – p-harmonic functions – higher differentiability
@article{COCV_2017__23_4_1543_0,
     author = {Cellina, Arrigo},
     title = {The regularity of solutions to some variational problems, including the $p${-Laplace} equation for $2 \leq{} p< 3$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1543--1553},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016064},
     mrnumber = {3716932},
     zbl = {1381.49015},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2016064/}
}
TY  - JOUR
AU  - Cellina, Arrigo
TI  - The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1543
EP  - 1553
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2016064/
DO  - 10.1051/cocv/2016064
LA  - en
ID  - COCV_2017__23_4_1543_0
ER  - 
%0 Journal Article
%A Cellina, Arrigo
%T The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1543-1553
%V 23
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2016064/
%R 10.1051/cocv/2016064
%G en
%F COCV_2017__23_4_1543_0
Cellina, Arrigo. The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553. doi : 10.1051/cocv/2016064. https://www.numdam.org/articles/10.1051/cocv/2016064/

B. Avelin and K. Nyström, Estimates for solutions to equations of p-Laplace type in Ahlfors regular NTA-domains. J. Funct. Anal. 266 (2014) 5955–6005. | DOI | MR | Zbl

A. Björn, A regularity classification of boundary points for p-harmonic functions and quasiminimizers. J. Math. Anal. Appl. 338 (2008) 39–47. | DOI | MR | Zbl

L. Damascelli, Comparison Theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998) 493–516. | DOI | Numdam | MR | Zbl

E.N. Dancer D. Daners and D. Hauer, A Liouville theorem for p-harmonic functions on exterior domains. Positivity 19 (2015) 577–586. | DOI | MR | Zbl

D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations. Trans. Amer. Math. Soc. 361 (2009) 6475–6500. | DOI | MR | Zbl

L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems. Rev. Mat. Complutense 11 (1998) 203–219. | MR | Zbl

E. Giusti, Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Bologna (1994). | MR | Zbl

S. Hildebrandt and K.-O. Widman, Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67–86. | DOI | MR | Zbl

T. Kuusi and G. Mingione, Guide to nonlinear potential estimates. Bull. Math. Sci. 4 (2014) 1–82. | DOI | MR | Zbl

O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear elliptic equations. Translated from the Russian. Academic Press, New York, London (1968). | Zbl

P. Lindqvist, Notes on the p-Laplace equation, Lecture Notes at the University of Jyvaskyla. Department of Mathematics and Statistics (2006). | MR | Zbl

J.J. Manfredi, A.M. Oberman and A.P. Sviridov, Nonlinear elliptic partial differential equations and p-harmonic functions on graphs. Differ. Integral Equ. 28 (2015) 79–102. | MR | Zbl

L. Nirenberg, Estimates and existence of solutions of elliptic equations. Commun. Pure Appl. Math. 9 (1956) 509–529. | DOI | MR | Zbl

S. Pigola and G. Veronelli, On the Dirichlet problem for p-harmonic maps I: compact targets. Geom. Dedicata 177 (2015) 307–322. | DOI | MR | Zbl

P. Tolksdorf, Regularity for a More General Class of Quasilinear Elliptic Equations. J. Differ. Equ. 51 (1984) 126–150. | DOI | MR | Zbl

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219–240. | DOI | MR | Zbl

  • Montoro, Luigi; Muglia, Luigi; Sciunzi, Berardino Optimal second order boundary regularity for solutions to p-Laplace equations, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2 | DOI:10.1007/s00526-024-02902-6
  • Baratta, Daniel; Muglia, Luigi; Vuono, Domenico Second order regularity for solutions to anisotropic degenerate elliptic equations, Journal of Differential Equations, Volume 435 (2025), p. 113250 | DOI:10.1016/j.jde.2025.113250
  • Montoro, Luigi; Muglia, Luigi; Sciunzi, Berardino; Vuono, Domenico Regularity and symmetry results for the vectorial p-Laplacian, Nonlinear Analysis, Volume 251 (2025), p. 113700 | DOI:10.1016/j.na.2024.113700
  • Karppinen, Arttu; Sarsa, Saara Local second order regularity of solutions to elliptic Orlicz–Laplace equation, Nonlinear Analysis, Volume 253 (2025), p. 113737 | DOI:10.1016/j.na.2024.113737
  • Guarnotta, Umberto; Mosconi, Sunra A general notion of uniform ellipticity and the regularity of the stress field for elliptic equations in divergence form, Analysis PDE, Volume 16 (2023) no. 8, p. 1955 | DOI:10.2140/apde.2023.16.1955
  • De Filippis, Cristiana; Piccinini, Mirco Borderline Global Regularity for Nonuniformly Elliptic Systems, International Mathematics Research Notices, Volume 2023 (2023) no. 20, p. 17324 | DOI:10.1093/imrn/rnac283
  • Wang, Yuqing; Zhang, Chao; Zhu, Yizhe A second-order Sobolev regularity for p(x)-Laplace equations, Journal of Mathematical Analysis and Applications, Volume 526 (2023) no. 2, p. 127328 | DOI:10.1016/j.jmaa.2023.127328
  • Balci, Anna Kh.; Cianchi, Andrea; Diening, Lars; Maz’ya, Vladimir A pointwise differential inequality and second-order regularity for nonlinear elliptic systems, Mathematische Annalen, Volume 383 (2022) no. 3-4, p. 1 | DOI:10.1007/s00208-021-02249-9
  • Dong, Hongjie; Peng, Fa; Zhang, Yi Ru-Ya; Zhou, Yuan Hessian estimates for equations involving p-Laplacian via a fundamental inequality, Advances in Mathematics, Volume 370 (2020), p. 107212 | DOI:10.1016/j.aim.2020.107212
  • Cianchi, Andrea; Maz'ya, Vladimir G. Optimal second-order regularity for the p-Laplace system, Journal de Mathématiques Pures et Appliquées, Volume 132 (2019), p. 41 | DOI:10.1016/j.matpur.2019.02.015
  • Cianchi, Andrea; Maz’ya, Vladimir G. Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 2, p. 569 | DOI:10.1007/s00205-018-1223-7
  • Cellina, Arrigo; Staicu, Vasile On the higher differentiability of solutions to a class of variational problems of fast growth, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 2 | DOI:10.1007/s00526-018-1323-0
  • Attouchi, Amal; Ruosteenoja, Eero Remarks on regularity for p-Laplacian type equations in non-divergence form, Journal of Differential Equations, Volume 265 (2018) no. 5, p. 1922 | DOI:10.1016/j.jde.2018.04.017
  • Miśkiewicz, Michał Fractional differentiability for solutions of the inhomogeneous 𝑝-Laplace system, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 7, p. 3009 | DOI:10.1090/proc/13993

Cité par 14 documents. Sources : Crossref