Homogenization of a viscoelastic model for plant cell wall biomechanics
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1447-1471.

The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin–Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding methods) we derive macroscopic equations from the microscopic model for cell wall biomechanics consisting of strongly coupled equations of linear viscoelasticity and a system of reaction-diffusion and ordinary differential equations. As is typical for microscopic viscoelastic problems, the macroscopic equations governing the viscoelastic deformations of plant cell walls contain memory terms. The derivation of the macroscopic problem for the degenerate viscoelastic equations is conducted using a perturbation argument.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016060
Classification : 35B27, 35Q92, 35Kxx, 74Qxx, 74A40, 74D05
Mots clés : Homogenization, two-scale convergence, periodic unfolding method, viscoelasticity, plant modelling
Ptashnyk, Mariya 1 ; Seguin, Brian 2

1 Department of Mathematics, University of Dundee. Dundee, DD1 4HN, UK.
2 Department of Mathematics and Statistics, Loyola University Chicago, 60660 Chicago, USA.
@article{COCV_2017__23_4_1447_0,
     author = {Ptashnyk, Mariya and Seguin, Brian},
     title = {Homogenization of a viscoelastic model for plant cell wall biomechanics},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1447--1471},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016060},
     mrnumber = {3716928},
     zbl = {1380.35018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016060/}
}
TY  - JOUR
AU  - Ptashnyk, Mariya
AU  - Seguin, Brian
TI  - Homogenization of a viscoelastic model for plant cell wall biomechanics
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1447
EP  - 1471
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016060/
DO  - 10.1051/cocv/2016060
LA  - en
ID  - COCV_2017__23_4_1447_0
ER  - 
%0 Journal Article
%A Ptashnyk, Mariya
%A Seguin, Brian
%T Homogenization of a viscoelastic model for plant cell wall biomechanics
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1447-1471
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016060/
%R 10.1051/cocv/2016060
%G en
%F COCV_2017__23_4_1447_0
Ptashnyk, Mariya; Seguin, Brian. Homogenization of a viscoelastic model for plant cell wall biomechanics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1447-1471. doi : 10.1051/cocv/2016060. http://www.numdam.org/articles/10.1051/cocv/2016060/

Z. Abdessamad, I. Kostin, G. Panasenko and V.P. Smyshlyayev, Memory effect in homogenization of a viscoelastic Kelvin–Voigt model with time-dependent coefficients. Math. Models Methods Appl. Sci. 19 (2009) 1603–1630. | DOI | MR | Zbl

E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlin. Anal. Theory Methods Appl. 18 (1992) 481–496. | DOI | MR | Zbl

N.D. Alikakos, L p bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4 (1976) 827–868. | DOI | MR | Zbl

G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2010). | MR | Zbl

P.G. Ciarlet and P. Ciarlet Jr., Another approach to linear elasticity and Korn’s inequality. C.R. Acad. Sci. Paris Ser. I 339 (2004) 307–312. | DOI | MR | Zbl

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. | DOI | MR | Zbl

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718–760. | DOI | MR | Zbl

D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer (1999). | MR | Zbl

I. Diddens, B. Murphy, M. Krisch and M. Müller, Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41 (2008) 9755–9759. | DOI

H.I. Ene, M.L. Mascarenhas and J. Saint Jean Paulin, Fading memory effects in elastic-viscoelastic composites. RAIRO Model. Math. Anal. Numer. 31 (1997) 927–952. | DOI | Numdam | MR | Zbl

G.-A. Francfort and P.-M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96 (1986) 265–293. | DOI | MR | Zbl

R.P. Gilbert, A. Panachenko and X. Xie, Homogenization of a viscoelastic matrix in linear frictional contact. Math. Methods Appl. Sci. 28 (2005) 309–328. | DOI | MR | Zbl

C.-M. Hayot, E. Forouzesh, A. Goel, A. Avramova and J.-A. Turner, Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J. Exp. Biol. 63 (2012) 2525–2540.

W. Jäger and U. Hornung, Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equ. 92 (1991) 199–225. | DOI | MR | Zbl

V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer (1994). | MR

A. Korn, Über einige ungleichungen, welche in der theorie del elastichen und elektrishen schwingungen eine rolle spielen. Bulletin international de l’Académie des sciences de Cracovie, Classe des sciences mathématiques et naturelles (1909) 705–724. | JFM

M.L. Mascarenhas, Homogenization of a viscoelastic equations with non-periodic coefficients. Proc. R. Soc. Edinb.: Sect. A Math. 106 (1987) 143–160. | DOI | MR | Zbl

F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlin. Differ. Equ. Appl. Birkhäuser Boston, Boston, MA (1997) 21–43. | MR | Zbl

J. Necas, Les méthodes directes en théorie des équations elliptiques. Academie, Prague (1967). | MR | Zbl

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

O. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in Elasticity and Homogenization. North Holland (1992). | MR | Zbl

A. Peaucelle, S.A. Braybrook, L. Le Guillou, E. Bron, C. Kuhlemeier and H. Hofte, Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21 (2011) 1720–1726. | DOI

S. Pelletier, J. Van Orden, S. Wolf, K. Vissenberg, J. Delacourt, Y.-A. Ndong, J. Pelloux, V. Bischoff, A. Urbain, G. Mouille, G. Lemonnier, J.-P. Renou and H. Hofte, A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol. 188 (2010) 726–739. | DOI

M. Ptashnyk, Derivation of a macroscopic model for nutrient uptake by a single branch of hairy-roots. Nonlin. Anal.: Real World Appl. 11 (2010) 4586–4596. | DOI | MR | Zbl

M. Ptashnyk, B. Seguin, Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics. ESAIM: M2AN 50 (2016) 593–631. | DOI | Numdam | MR | Zbl

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer (1980). | MR | Zbl

P.J. White, The pathways of calcium movement to the xylem. J. Exp. Bot. 52 (2001) 891–899. | DOI

S. Wolf and S. Greiner, Growth control by cell wall pectins. Protoplasma 249 (2012) 169–175. | DOI

S. Wolf, K. Hématy and H. Höfte, Growth control and cell wall signaling in plants. Ann. Review Plant Biol. 63 (2012) 381–407. | DOI

S. Wolf, J. Mravec, S. Greiner, G. Mouille and H. Höfte, Plant cell wall homeostasis is mediated by Brassinosteroid feedback signaling. Curr. Biol. 22 (2012) 1732–1737. | DOI

Cité par Sources :