Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1419-1445.

We introduce the notion of mild supersolution for an obstacle problem in an infinite dimensional Hilbert space. The minimal supersolution of this problem is given in terms of a reflected BSDEs in an infinite dimensional Markovian framework. The results are applied to an optimal control and stopping problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016059
Classification : 60H15, 93E20
Mots clés : Reflected backward stochastic differential equations, obstacle problem, optimal stopping in infinite dimension
Fuhrman, Marco 1 ; Masiero, Federica 2 ; Tessitore, Gianmario 2

1 Politecnico di Milano, Dipartimento di Matematica via Bonardi 9, 20133 Milano, Italy.
2 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
@article{COCV_2017__23_4_1419_0,
     author = {Fuhrman, Marco and Masiero, Federica and Tessitore, Gianmario},
     title = {Reflected {BSDEs,} optimal control and stopping for infinite-dimensional systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1419--1445},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016059},
     mrnumber = {3716927},
     zbl = {1375.60106},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016059/}
}
TY  - JOUR
AU  - Fuhrman, Marco
AU  - Masiero, Federica
AU  - Tessitore, Gianmario
TI  - Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1419
EP  - 1445
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016059/
DO  - 10.1051/cocv/2016059
LA  - en
ID  - COCV_2017__23_4_1419_0
ER  - 
%0 Journal Article
%A Fuhrman, Marco
%A Masiero, Federica
%A Tessitore, Gianmario
%T Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1419-1445
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016059/
%R 10.1051/cocv/2016059
%G en
%F COCV_2017__23_4_1419_0
Fuhrman, Marco; Masiero, Federica; Tessitore, Gianmario. Reflected BSDEs, optimal control and stopping for infinite-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1419-1445. doi : 10.1051/cocv/2016059. http://www.numdam.org/articles/10.1051/cocv/2016059/

J.P. Aubin and H. Frankowska, Set-valued analysis, in Vol. 2 of Systems and Control: Foundations and Applications. Birkhäuser Boston Inc., Boston, MA (1990). | MR | Zbl

A. Bensoussan, Stochastic control by functional analysis methods. Studies in Mathematics and its Applications, Vol. 11. North-Holland Publishing Co., Amsterdam, New York (1982). | MR | Zbl

G. Da Prato and J. Zabczyk,Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press (1992). | MR | Zbl

G. Da Prato and J. Zabczyk, Second order partial differential equations in Hilbert spaces. In Vol. 293 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2002). | MR | Zbl

C. Dellacherie and P.A. Meyer. Probability and Potential B: Theory of Martingales. North-Holland Amsterdam (1982). | MR | Zbl

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. | DOI | MR | Zbl

N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

I. Karatzas, S.E. Shreve, Steven, Brownian motion and stochastic calculus. Second edition. In Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York. | MR | Zbl

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation. Appl. Math. Optim. 47 (2003) 253–278. | DOI | MR | Zbl

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002) 1397–1465. | DOI | MR | Zbl

M. Fuhrman and G. Tessitore, The Bismut-Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stoch. Stoch. Rep. 74 (2002) 429–464. | DOI | MR | Zbl

M. Fuhrman and G. Tessitore, Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004) 607–660. | DOI | MR | Zbl

M. Fuhrman and G. Tessitore, Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim. 51 (2005) 279–332. | DOI | MR | Zbl

Y. Hu and G. Tessitore, BSDE on an infinite horizon and elliptic PDEs in infinite dimension. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 825–846. | DOI | MR | Zbl

F. Masiero, Semilinear Kolmogorov equations and applications to stochastic optimal control. Appl. Math. Optim. 51 (2005) 201–250. | DOI | MR | Zbl

F. Masiero, Infinite horizon stochastic optimal control problems with degenerate noise and elliptic equations in Hilbert spaces. Appl. Math. Optim. 55 (2007) 285–326. | DOI | MR | Zbl

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. | DOI | MR | Zbl

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic partial differential equations and their applications, edited by B.L. Rozowskii and R.B. Sowers. In Vol. 176 of Lect. Notes Control Inf. Sci. Springer 176 (1992). | MR | Zbl

F. Russo and P. Vallois, The generalized covariation process and It formula. Stochastic Processes Appl. 59 (1995) 81–104. | DOI | MR | Zbl

J. Yong and X.Y. Zhou, Stochastic controls, Hamiltonian systems and HJB equations, Applications of Mathematics. Springer, New York (1999). | MR | Zbl

Cité par Sources :