Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1381-1395.

We consider a class of quasilinear operators on a bounded domain ΩR n and address the question of optimizing the first eigenvalue with respect to the boundary conditions, which are of the Robin-type. We describe the optimizing boundary conditions and establish upper and lower bounds on the respective maximal and minimal eigenvalue.

DOI : 10.1051/cocv/2016058
Classification : 35P15sep 35P30, 35J60
Mots-clés : Robin boundary conditions, optimization problem, p −Laplacian
Della Pietra, Francesco 1 ; Gavitone, Nunzia 1 ; Kovařík, Hynek 2

1 Universitàdegli studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Via Cintia, Monte S. Angelo – 80126 Napoli, Italia.
2 Università degli Studi di Brescia, DICATAM, Sezione di Matematica, Via Branze 38, 25123 Brescia, Italy.
@article{COCV_2017__23_4_1381_0,
     author = {Della Pietra, Francesco and Gavitone, Nunzia and Kova\v{r}{\'\i}k, Hynek},
     title = {Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1381--1395},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016058},
     mrnumber = {3716925},
     zbl = {1386.35294},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016058/}
}
TY  - JOUR
AU  - Della Pietra, Francesco
AU  - Gavitone, Nunzia
AU  - Kovařík, Hynek
TI  - Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1381
EP  - 1395
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016058/
DO  - 10.1051/cocv/2016058
LA  - en
ID  - COCV_2017__23_4_1381_0
ER  - 
%0 Journal Article
%A Della Pietra, Francesco
%A Gavitone, Nunzia
%A Kovařík, Hynek
%T Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1381-1395
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016058/
%R 10.1051/cocv/2016058
%G en
%F COCV_2017__23_4_1381_0
Della Pietra, Francesco; Gavitone, Nunzia; Kovařík, Hynek. Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1381-1395. doi : 10.1051/cocv/2016058. http://www.numdam.org/articles/10.1051/cocv/2016058/

R. Adams, Sobolev Spaces. In vol. 65 of Pure and Applied Mathematics. Academic Press, New York, London (1975). | MR | Zbl

A. Anane, Simplicity and isolation of the first eigenvalue of the p-Laplacian with weight. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987) 725–728. | MR | Zbl

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293–318. | DOI | MR | Zbl

M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the p-Laplace operator. Manuscr. Math. 109 (2002) 229–231. | DOI | MR | Zbl

M.-H. Bossel, Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de linégalité de Cheeger. C.R. Acad. Sci. Paris Ser. I Math. 302 (1986) 47–50. | MR | Zbl

D. Bucur, G. Buttazzo and C. Nitsch, Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. 107 (2017) 451–463. | DOI | MR

D. Bucur and A. Giacomini, A variational approach to the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198 (2010) 927–961. | DOI | MR | Zbl

D. Bucur and A. Giacomini, Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach. Arch. Ration. Mech. Anal. 218 (2014) 757–824. | DOI | MR | Zbl

Q.-Y. Dai and Y.-X. Fu, Faber-Krahn inequality for Robin problems involving p-Laplacian. Acta Math. Appl. Sin., Engl. Ser. 27 (2011) 13–28. | DOI | MR | Zbl

D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension. Math. Anal. 335 (2006) 767–785. | DOI | MR | Zbl

F. Della Pietra and N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions Potential Anal. 41 (2014) 1147–1166. | DOI | MR | Zbl

J.I. Diaz and J.E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I 305 (1987) 521–524. | MR | Zbl

L.C. Evans, Partial Differential Equations. In Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society (1998). | MR | Zbl

G. Faber, Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt. Sitz. der math.-phys. Cl. der k bayer. Akad. d. Wiss. (1923) 169–172. | JFM

V. Ferone, C.Nitsch and C. Trombetti, On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue. Commun. Pure Appl. Anal. 14 (2015) 63–82. | DOI | MR | Zbl

P. Freitas and D. Krejčiřík, The first Robin eigenvalue with negative boundary parameter, Adv. Math. 280 (2015) 322–339. | DOI | MR | Zbl

E. Harrell, P. Kröger and K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. | DOI | MR | Zbl

A. Henrot, Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3 (2003) 443–461. | MR | Zbl

J. Hersch, The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math. 13 (1963) 1229–1238. | DOI | MR | Zbl

H. Kovařík, On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions. J. Geom. Anal. 24 (2014) 1509–1525. | DOI | MR | Zbl

E. Krahn, Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises. Ann. Math. 94 (1925) 97–100. | DOI | JFM | MR

O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). | MR | Zbl

E.H. Lieb and M. Loss, Analysis, 2nd edition. In vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2001). | MR | Zbl

G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlin. Anal. 12 (1988) 1203–1219. | DOI | MR | Zbl

E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. | MR | Zbl

M. Picone, Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine. Atti Accad. Naz. Lincei Rend. 20 (1911) 213–219. | JFM

J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984) 191–202. | DOI | MR | Zbl

X.-J. Wang, A class of fully nonlinear elliptic equations and related functionals. Ind. Univ. Math. J. 43 (1994) 25–54. | DOI | MR | Zbl

Cité par Sources :