Local density of Caputo-stationary functions in the space of smooth functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1361-1380.

We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any C k ([0,1]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a<0. Otherwise said, Caputo-stationary functions are dense in C k loc (R).

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016056
Classification : 26A33, 34K37, 47G20
Mots-clés : Caputo stationary, fractional derivative, nonlocal operators
Bucur, Claudia 1

1 Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini, 50 20100, Milano Italy.
@article{COCV_2017__23_4_1361_0,
     author = {Bucur, Claudia},
     title = {Local density of {Caputo-stationary} functions in the space of smooth functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1361--1380},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016056},
     mrnumber = {3716924},
     zbl = {1396.26013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016056/}
}
TY  - JOUR
AU  - Bucur, Claudia
TI  - Local density of Caputo-stationary functions in the space of smooth functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1361
EP  - 1380
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016056/
DO  - 10.1051/cocv/2016056
LA  - en
ID  - COCV_2017__23_4_1361_0
ER  - 
%0 Journal Article
%A Bucur, Claudia
%T Local density of Caputo-stationary functions in the space of smooth functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1361-1380
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016056/
%R 10.1051/cocv/2016056
%G en
%F COCV_2017__23_4_1361_0
Bucur, Claudia. Local density of Caputo-stationary functions in the space of smooth functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1361-1380. doi : 10.1051/cocv/2016056. http://www.numdam.org/articles/10.1051/cocv/2016056/

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 ed. A Wiley-Interscience Publication. Selected Government Publications. New York: John Wiley & Sons, Inc; Washington, D.C.: National Bureau of Standards. xiv, 1046 pp. 44.95 (1984). | Zbl

C. Bucur and E. Valdinoci. Nonlocal diffusion and applications. Cham: Springer, Bologna: UMI (2016). | MR

M. Caputo, Linear models of dissipation whose Q is almost frequency independent. II. Fract. Calc. Appl. Anal. 11 (2008) 4–14. Reprinted from Geophys. J. R. Astr. Soc. 13 (1967) 529–539. | MR | Zbl

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

S. Dipierro, O. Savin and E. Valdinoci, All functions are locally s-harmonic up to a small error. Preprint (2014). To appear in: J. Eur. Math. Soc. JEMS (2017). | arXiv | MR

A. Anatolii Aleksandrovich Kilbas, Hari M. Srivastava and Juan J. Trujillo. Theory and applications of fractional differential equations. In Vol. 204. Elsevier Science Limited (2006). | MR | Zbl

K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. Wiley New York (1993). | MR | Zbl

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives: Theory and applications. Gordon and Breach, Yverdon (1993). | MR | Zbl

R.L. Wheeden and A. Zygmund, Measure and integral. An introduction to real analysis. CRC Press (1977). | MR | Zbl

Cité par Sources :