Unified gradient flow structure of phase field systems via a generalized principle of virtual powers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1201-1216.

In this paper we introduce a general abstract formulation of a variational thermomechanical model by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, possibly including the thermal one. In particular, through a suitable choice of the driving functional, we formally get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. In this framework, the equations may be interpreted as internal balance equations of forces (e.g., thermal or mechanical ones). We prove a global in time existence of (a suitably defined weak) solutions for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016051
Classification : 74N25, 82B26, 35A01, 35A02
Mots clés : Gradient flow, phase field systems, existence of weak solutions, uniqueness
Bonetti, Elena 1 ; Rocca, Elisabetta 2

1 Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
2 Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 5, 27100 Pavia, Italy.
@article{COCV_2017__23_3_1201_0,
     author = {Bonetti, Elena and Rocca, Elisabetta},
     title = {Unified gradient flow structure of phase field systems via a generalized principle of virtual powers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1201--1216},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016051},
     zbl = {1365.74140},
     mrnumber = {3660465},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016051/}
}
TY  - JOUR
AU  - Bonetti, Elena
AU  - Rocca, Elisabetta
TI  - Unified gradient flow structure of phase field systems via a generalized principle of virtual powers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1201
EP  - 1216
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016051/
DO  - 10.1051/cocv/2016051
LA  - en
ID  - COCV_2017__23_3_1201_0
ER  - 
%0 Journal Article
%A Bonetti, Elena
%A Rocca, Elisabetta
%T Unified gradient flow structure of phase field systems via a generalized principle of virtual powers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1201-1216
%V 23
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016051/
%R 10.1051/cocv/2016051
%G en
%F COCV_2017__23_3_1201_0
Bonetti, Elena; Rocca, Elisabetta. Unified gradient flow structure of phase field systems via a generalized principle of virtual powers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1201-1216. doi : 10.1051/cocv/2016051. http://www.numdam.org/articles/10.1051/cocv/2016051/

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976). | MR | Zbl

V. Barbu, P. Colli, G. Gilardi and M. Grasselli, Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation. Differential Integral Equations 13 (2000) 1233–1262. | DOI | MR | Zbl

E. Bonetti and M. Frémond, A phase transition model with the entropy balance. Math. Meth. Appl. Sci. 26 (2003) 539–556. | DOI | MR | Zbl

E. Bonetti, P. Colli and M. Frémond, A phase field model with thermal memory governed by the entropy balance. Math. Models Methods Appl. Sci. 13 (2003) 1565–1588. | DOI | MR | Zbl

E. Bonetti, M. Frémond and E. Rocca, A new dual approach for a class of phase transitions with memory: existence and long-time behaviour of solutions. J. Math. Pure Appl. 88 (2007) 455–481. | DOI | MR | Zbl

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Vol. 5 of North-Holland Math. Studies. North-Holland, Amsterdam (1973). | MR | Zbl

G. Caginalp, The dynamics of a conserved phase-field system: Stefan-like, Hele–Show, and Cahn–Hilliard models as asymptotic limits. IMA J. Appl. Math. 44 (1990) 77–94. | DOI | MR | Zbl

J. Cahn and J. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI | Zbl

P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Eq. 15 (1990) 737–756. | DOI | MR | Zbl

P. Colli, P. Krejčí, E. Rocca and J. Sprekels, Nonlinear evolution inclusions arising from phase change models. Czech. Math. J. 57 (2007) 1067–1098. | DOI | MR | Zbl

M. Fabrizio and C. Giorgi, Sulla termodinamica dei materiali semplici. Boll. UMI 6 (1986) 441-464. | Zbl

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009) 1345–1369. | DOI | MR | Zbl

M. Frémond, Nonsmooth thermomechanics. Springer-Verlag, Berlin (2002). | MR | Zbl

A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432 (1991) 171–194. | DOI | MR | Zbl

A.E. Green and P.M. Naghdi, A demonstration of consistency of an entropy balance with balance of energy. ZAMP 42 (1991) 159–168. | MR | Zbl

M.E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92 (1996) 178–192. | DOI | MR | Zbl

A. Hawkins-Daruud, K.G. Van Der Zee, J.T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Math. Biomed. Engng. 28 (2011) 3–24. | DOI | MR | Zbl

D. Hilhorst, J. Kampmann, T.N. Nguyen, K.G. Van Der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25 (2015) 1011–1043. | DOI | MR | Zbl

F. Luterotti, G. Schimperna and U. Stefanelli, Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math. 60 (2002) 301–316. | DOI | MR | Zbl

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 479–499. | MR | Zbl

A. Mielke, Free energy, free entropy, and a gradient structure for thermoplasticity. preprint WIAS n. 2091 (2015).

A. Mielke and F. Theil, On rate-independent hysteresis models. Nonlinear Differ. Eq. Appl. 11 (2004) 151–189. | MR | Zbl

A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Eq. 46 (2013) 253–310. | DOI | MR | Zbl

A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance. J. Evol. Eq. 5 (2005) 253–276. | DOI | MR | Zbl

O. Penrose and P.C. Fife, Thermodynamically consistent models of phase field type for the kinetics of phase transitions. Physica D 43 (1990) 44–62. | DOI | MR | Zbl

P. Podio-Guidugli, A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20 (2009) 479–487. | DOI | MR | Zbl

E. Rocca and R. Scala, A rigorous sharp interface limit of a diffuse interface model related to tumor growth. J. Nonlinear Sci. 27 (2017) 847–872. | DOI | MR | Zbl

R. Rossi and G. Savarè, Existence and approximation results for gradient flows. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004) 183–196. | MR | Zbl

R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM COCV 12 (2006) 564–614. | DOI | Numdam | MR | Zbl

G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose–Fife model. J. Evol. Eq. 12 (2012) 863–890. | DOI | MR | Zbl

J. Simon, Compact sets in the space L p (0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl

Cité par Sources :