Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1353-1369.

We consider the model of a quantum harmonic oscillator governed by a Lindblad master equation where the typical drive and loss channels are multi-photon processes instead of single-photon ones; this implies a dissipation operator of order 2k with integer k>1 for a k-photon process. We prove that the corresponding PDE makes the state converge, for large time, to an invariant subspace spanned by a set of k selected basis vectors; the latter physically correspond to so-called coherent states with the same amplitude and uniformly distributed phases. We also show that this convergence features a finite set of bounded invariant functionals of the state (physical observables), such that the final state in the invariant subspace can be directly predicted from the initial state. The proof includes the full arguments towards the well-posedness of the corresponding dynamics in proper Banach spaces of Hermitian trace-class operators equipped with adapted nuclear norms. It relies on the Hille−Yosida theorem and Lyapunov convergence analysis.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016050
Classification : 37L99, 47B44, 81Q93, 81S22, 81V10
Mots clés : Infinite-dimensional dissipative dynamical systems, Lyapunov functions and stability, accretive operators, Lindblad master equation, decoherence, quantum control, quantum electrodynamics and circuits.
Azouit, Rémi 1 ; Sarlette, Alain 2, 3 ; Rouchon, Pierre 1

1 Centre Automatique et Systèmes, Mines-ParisTech, PSL Research University, 60 Bd Saint-Michel, 75006 Paris, France
2 INRIA Paris, France
3 Ghent University/SYSTeMS, Technologiepark 914, 9052 Zwijnaarde, Belgium
@article{COCV_2016__22_4_1353_0,
     author = {Azouit, R\'emi and Sarlette, Alain and Rouchon, Pierre},
     title = {Well-posedness and convergence of the {Lindblad} master equation for a quantum harmonic oscillator with multi-photon drive and damping},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1353--1369},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016050},
     zbl = {1354.37088},
     mrnumber = {3570505},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016050/}
}
TY  - JOUR
AU  - Azouit, Rémi
AU  - Sarlette, Alain
AU  - Rouchon, Pierre
TI  - Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1353
EP  - 1369
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016050/
DO  - 10.1051/cocv/2016050
LA  - en
ID  - COCV_2016__22_4_1353_0
ER  - 
%0 Journal Article
%A Azouit, Rémi
%A Sarlette, Alain
%A Rouchon, Pierre
%T Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1353-1369
%V 22
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016050/
%R 10.1051/cocv/2016050
%G en
%F COCV_2016__22_4_1353_0
Azouit, Rémi; Sarlette, Alain; Rouchon, Pierre. Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1353-1369. doi : 10.1051/cocv/2016050. http://www.numdam.org/articles/10.1051/cocv/2016050/

A. Arnold, J.L. López, P.A. Markowich and J. Soler, An analysis of quantum Fokker−Planck models: a Wigner function approach. Rev. Mat. Iberoam. 20 (2004) 771–814. | DOI | MR | Zbl

R. Azouit, A. Sarlette and P. Rouchon, Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator. Proc. of the 54th IEEE Conf. Decision and Control. Osaka, Japan, December (2015).

R. Bhatia, Matrix Analysis. Springer (1997). | MR | Zbl

H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press (2002). | MR | Zbl

H. Brezis, Functional analysis. Sobolev spaces and partial differential equations. Springer (2010). | MR | Zbl

E.B. Davies, Quantum theory of open systems. IAM (1976). | MR | Zbl

E.B. Davies. Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys. 11 (1977) 169–188. | DOI | MR | Zbl

K. Geerlings et al., Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Phys. Rev. Lett. 110 (2013) 120501. | DOI

S. Haroche and J.M. Raimond, Exploring the quantum, Oxford University Press (2006). | MR | Zbl

H. Krauter et al., Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects. Phys. Rev. Lett. 107 (2011) 080503. | DOI

Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M.J. Hatridge, M. Reagor, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi and M.H. Devoret, Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347 (2015) 853–857. | DOI

J.C. Maxwell, On governors, Proc. Roy. Soc. 16 (1868). | JFM

M. Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L. Jiang and M.H. Devoret, Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16 (2014) 045014. | DOI | Zbl

K.W. Murch et al., Cavity-Assisted Quantum Bath Engineering. Phys. Rev. Lett. 109 (2012) 183602. | DOI

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press (2000). | MR | Zbl

S. Pielawa, G. Morigi, D. Vitali and L. Davidovich, Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir. Phys. Rev. Lett. 98 (2007) 240401. | DOI

J.F. Poyatos, I. Cirac and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77 (1996) 4728. | DOI

A. Sarlette, J.M. Raimond, M. Brune and P. Rouchon, Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering. Phys. Rev. Lett. 107 (2011) 010402. | DOI

S. Shankar et al., Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504 (2013) 419. | DOI

V.E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier (2008). | MR | Zbl

F. Ticozzi and L. Viola, Quantum Markovian Subsystems: Invariance, Attractivity, and Control. IEEE Trans. Automat. Control 53 (2008) 2048–2063. | DOI | MR | Zbl

F. Ticozzi and L. Viola, Stabilizing Entangled States with Quasi-Local Quantum Dynamical Semigroups. Phil. Trans. R. Soc. A 370 (2012) 5259–5269. | DOI | MR | Zbl

Cité par Sources :