We consider the model of a quantum harmonic oscillator governed by a Lindblad master equation where the typical drive and loss channels are multi-photon processes instead of single-photon ones; this implies a dissipation operator of order with integer for a -photon process. We prove that the corresponding PDE makes the state converge, for large time, to an invariant subspace spanned by a set of selected basis vectors; the latter physically correspond to so-called coherent states with the same amplitude and uniformly distributed phases. We also show that this convergence features a finite set of bounded invariant functionals of the state (physical observables), such that the final state in the invariant subspace can be directly predicted from the initial state. The proof includes the full arguments towards the well-posedness of the corresponding dynamics in proper Banach spaces of Hermitian trace-class operators equipped with adapted nuclear norms. It relies on the Hille−Yosida theorem and Lyapunov convergence analysis.
Accepté le :
DOI : 10.1051/cocv/2016050
Mots clés : Infinite-dimensional dissipative dynamical systems, Lyapunov functions and stability, accretive operators, Lindblad master equation, decoherence, quantum control, quantum electrodynamics and circuits.
@article{COCV_2016__22_4_1353_0, author = {Azouit, R\'emi and Sarlette, Alain and Rouchon, Pierre}, title = {Well-posedness and convergence of the {Lindblad} master equation for a quantum harmonic oscillator with multi-photon drive and damping}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1353--1369}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016050}, zbl = {1354.37088}, mrnumber = {3570505}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016050/} }
TY - JOUR AU - Azouit, Rémi AU - Sarlette, Alain AU - Rouchon, Pierre TI - Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1353 EP - 1369 VL - 22 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016050/ DO - 10.1051/cocv/2016050 LA - en ID - COCV_2016__22_4_1353_0 ER -
%0 Journal Article %A Azouit, Rémi %A Sarlette, Alain %A Rouchon, Pierre %T Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1353-1369 %V 22 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016050/ %R 10.1051/cocv/2016050 %G en %F COCV_2016__22_4_1353_0
Azouit, Rémi; Sarlette, Alain; Rouchon, Pierre. Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1353-1369. doi : 10.1051/cocv/2016050. http://www.numdam.org/articles/10.1051/cocv/2016050/
An analysis of quantum Fokker−Planck models: a Wigner function approach. Rev. Mat. Iberoam. 20 (2004) 771–814. | DOI | MR | Zbl
, , and ,R. Azouit, A. Sarlette and P. Rouchon, Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator. Proc. of the 54th IEEE Conf. Decision and Control. Osaka, Japan, December (2015).
R. Bhatia, Matrix Analysis. Springer (1997). | MR | Zbl
H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press (2002). | MR | Zbl
H. Brezis, Functional analysis. Sobolev spaces and partial differential equations. Springer (2010). | MR | Zbl
E.B. Davies, Quantum theory of open systems. IAM (1976). | MR | Zbl
Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys. 11 (1977) 169–188. | DOI | MR | Zbl
.Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Phys. Rev. Lett. 110 (2013) 120501. | DOI
et al.,S. Haroche and J.M. Raimond, Exploring the quantum, Oxford University Press (2006). | MR | Zbl
Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects. Phys. Rev. Lett. 107 (2011) 080503. | DOI
et al.,Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347 (2015) 853–857. | DOI
, , , , , , , , , , , , , and ,J.C. Maxwell, On governors, Proc. Roy. Soc. 16 (1868). | JFM
Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16 (2014) 045014. | DOI | Zbl
, , , , , and ,Cavity-Assisted Quantum Bath Engineering. Phys. Rev. Lett. 109 (2012) 183602. | DOI
et al.,M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press (2000). | MR | Zbl
Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir. Phys. Rev. Lett. 98 (2007) 240401. | DOI
, , and ,Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77 (1996) 4728. | DOI
, and ,Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering. Phys. Rev. Lett. 107 (2011) 010402. | DOI
, , and ,Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504 (2013) 419. | DOI
et al.,V.E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier (2008). | MR | Zbl
Quantum Markovian Subsystems: Invariance, Attractivity, and Control. IEEE Trans. Automat. Control 53 (2008) 2048–2063. | DOI | MR | Zbl
and ,Stabilizing Entangled States with Quasi-Local Quantum Dynamical Semigroups. Phil. Trans. R. Soc. A 370 (2012) 5259–5269. | DOI | MR | Zbl
and ,Cité par Sources :