We are going to prove the local exact bilinear controllability for a Schrödinger equation, set in a bounded regular domain, in a neighborhood of an eigenfunction corresponding to a simple eigenvalue in dimension
Accepté le :
DOI : 10.1051/cocv/2016049
Mots-clés : Schrödinger equation, bilinear control
@article{COCV_2016__22_4_1264_0, author = {Puel, Jean-Pierre}, title = {Local exact bilinear control of the {Schr\"odinger} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1264--1281}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016049}, zbl = {1354.35126}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2016049/} }
TY - JOUR AU - Puel, Jean-Pierre TI - Local exact bilinear control of the Schrödinger equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1264 EP - 1281 VL - 22 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016049/ DO - 10.1051/cocv/2016049 LA - en ID - COCV_2016__22_4_1264_0 ER -
%0 Journal Article %A Puel, Jean-Pierre %T Local exact bilinear control of the Schrödinger equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1264-1281 %V 22 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016049/ %R 10.1051/cocv/2016049 %G en %F COCV_2016__22_4_1264_0
Puel, Jean-Pierre. Local exact bilinear control of the Schrödinger equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1264-1281. doi : 10.1051/cocv/2016049. https://www.numdam.org/articles/10.1051/cocv/2016049/
Local controllability of a 1D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. | DOI | Zbl
,Local controllability of 1D linear and nonlinear Schrödinger equations. J. Math. Pures Appl. 94 (2010) 520–554. | DOI | Zbl
and ,K. Beauchard and C. Laurent, Local exact controllability of the 2D Schrödinger-Poisson system. Preprint hal-01333627 (2016).
Controllability for distributed bilinear systems. SIAM J. Cont. Optim. 20 (1982) 575–597. | DOI | Zbl
, and ,A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401. | MR | Zbl
and ,Contrôle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47 (1990) 423–429. | Zbl
,Contrôle de l’equation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. | Zbl
,J.-L. Lions, Contrôlabilité exacte, perturbations et stabilization des systèmes distribués. Tome 1, Contrôlabilité exacte. Collection R.M.A 8, Masson (1988). | Zbl
Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24–34. | DOI | Zbl
,A regularity property for Schrödinger equations on bounded domains. Rev. Mat. Complut. 26 (2013) 183–192. | DOI | Zbl
,Fast and strongly localized observation for the Schrödinger equation. Trans. Amer. Math. Soc. 361 (2009) 951–977. | DOI | Zbl
, ,Das asymptotisch Verteilungsgezetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71 (1912) 441–479. | DOI | JFM
,Cité par Sources :