Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1370-1381.

For any smoothly bounded domain Ω n , n3, and any exponent p>2 * =2n/(n-2) we study the Lane–Emden heat flow u t -Δu=|u| p-2 u on Ω×]0,T[ and establish local and global well-posedness results for the initial value problem with suitably small initial data u| t=0 =u 0 in the Morrey space L 2,λ (Ω) for suitable T, where λ=4/(p-2). We contrast our results with results on instantaneous complete blow-up of the flow for certain large data in this space, similar to ill-posedness results of Galaktionov–Vazquez for the Lane–Emden flow on n .

DOI : 10.1051/cocv/2016041
Classification : 35K55
Mots-clés : Nonlinear parabolic equations, well-posedness of initial-boundary value problem
Blatt, Simon 1 ; Struwe, Michael 2

1 Fachbereich Mathematik, Universität Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
2 Departement Mathematik, ETH-Zürich, 8092 Zürich, Switzerland
@article{COCV_2016__22_4_1370_0,
     author = {Blatt, Simon and Struwe, Michael},
     title = {Well-posedness of the supercritical {Lane{\textendash}Emden} heat flow in {Morrey} spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1370--1381},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016041},
     zbl = {1364.35129},
     mrnumber = {3570506},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016041/}
}
TY  - JOUR
AU  - Blatt, Simon
AU  - Struwe, Michael
TI  - Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1370
EP  - 1381
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016041/
DO  - 10.1051/cocv/2016041
LA  - en
ID  - COCV_2016__22_4_1370_0
ER  - 
%0 Journal Article
%A Blatt, Simon
%A Struwe, Michael
%T Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1370-1381
%V 22
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016041/
%R 10.1051/cocv/2016041
%G en
%F COCV_2016__22_4_1370_0
Blatt, Simon; Struwe, Michael. Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1370-1381. doi : 10.1051/cocv/2016041. http://www.numdam.org/articles/10.1051/cocv/2016041/

D.R. Adams, A note on Riesz potentials. Duke Math. J. 42 (1975) 765–778. | DOI | MR | Zbl

J.M. Ball, Finite time blow-up in nonlinear problems. Nonlinear evolution equations. Proc. of Sympos., Univ. Wisconsin, Madison, Wis., 1977. Academic Press, New York-London (1978) 189–205. | MR | Zbl

P. Baras and L. Cohen, Complete blow-up after T max for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987) 142–174. | DOI | MR | Zbl

S. Blatt and M. Struwe, An analytic framework for the supercritical Lane–Emden equation and its gradient flow. Int. Math. Res. Notices 2015 (2015) 2342–2385. | MR | Zbl

S. Blatt and M. Struwe, Boundary regularity for the supercritical Lane–Emden heat flow. Calc. Var. 54 (2015) 2269–2284. Publisher’s erratum. Calc. Var. 54 (2015) 2285. | DOI | MR | Zbl

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data. J. Anal. Math. 68 (1996) 277–304. | DOI | MR | Zbl

A. Friedman, Partial differential equations. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London (1969). | MR | Zbl

H. Fujita, On the blowing up of solutions of the Cauchy Problem for u t =Δu+u 1+α . J. Fac. Sci. Univ. Tokyo Sect. I 13 (1996) 109–124. | MR | Zbl

V.A. Galaktionov and J.L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50 (1997) 1–67. | DOI | MR | Zbl

D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49 (1972/73) 241–269. | DOI | MR | Zbl

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations. Commun. Pure. Appl. Math. 16 (1963) 305–330. | DOI | MR | Zbl

H. Koch and D. Tataru, Well-posedness for the Navier–Stokes equations. Adv. Math. 157 (2001) 22–35. | DOI | MR | Zbl

T. Lamm, F. Robert and M. Struwe, The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257 (2009) 2951–2998. | DOI | MR | Zbl

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256 (2009) 992–1064. | DOI | MR | Zbl

M.E. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17 (1992) 1407–1456. | DOI | MR | Zbl

F.B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 38 (1981) 29–40. | DOI | MR | Zbl

Cité par Sources :