For any smoothly bounded domain
Mots-clés : Nonlinear parabolic equations, well-posedness of initial-boundary value problem
@article{COCV_2016__22_4_1370_0, author = {Blatt, Simon and Struwe, Michael}, title = {Well-posedness of the supercritical {Lane{\textendash}Emden} heat flow in {Morrey} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1370--1381}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016041}, zbl = {1364.35129}, mrnumber = {3570506}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2016041/} }
TY - JOUR AU - Blatt, Simon AU - Struwe, Michael TI - Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1370 EP - 1381 VL - 22 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016041/ DO - 10.1051/cocv/2016041 LA - en ID - COCV_2016__22_4_1370_0 ER -
%0 Journal Article %A Blatt, Simon %A Struwe, Michael %T Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1370-1381 %V 22 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016041/ %R 10.1051/cocv/2016041 %G en %F COCV_2016__22_4_1370_0
Blatt, Simon; Struwe, Michael. Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1370-1381. doi : 10.1051/cocv/2016041. https://www.numdam.org/articles/10.1051/cocv/2016041/
A note on Riesz potentials. Duke Math. J. 42 (1975) 765–778. | DOI | MR | Zbl
,J.M. Ball, Finite time blow-up in nonlinear problems. Nonlinear evolution equations. Proc. of Sympos., Univ. Wisconsin, Madison, Wis., 1977. Academic Press, New York-London (1978) 189–205. | MR | Zbl
Complete blow-up after
An analytic framework for the supercritical Lane–Emden equation and its gradient flow. Int. Math. Res. Notices 2015 (2015) 2342–2385. | MR | Zbl
and ,Boundary regularity for the supercritical Lane–Emden heat flow. Calc. Var. 54 (2015) 2269–2284. Publisher’s erratum. Calc. Var. 54 (2015) 2285. | DOI | MR | Zbl
and ,A nonlinear heat equation with singular initial data. J. Anal. Math. 68 (1996) 277–304. | DOI | MR | Zbl
and ,A. Friedman, Partial differential equations. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London (1969). | MR | Zbl
On the blowing up of solutions of the Cauchy Problem for
Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50 (1997) 1–67. | DOI | MR | Zbl
and ,Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49 (1972/73) 241–269. | DOI | MR | Zbl
and ,On the growth of solutions of quasi-linear parabolic equations. Commun. Pure. Appl. Math. 16 (1963) 305–330. | DOI | MR | Zbl
,Well-posedness for the Navier–Stokes equations. Adv. Math. 157 (2001) 22–35. | DOI | MR | Zbl
and ,The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257 (2009) 2951–2998. | DOI | MR | Zbl
, and ,Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256 (2009) 992–1064. | DOI | MR | Zbl
and ,Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17 (1992) 1407–1456. | DOI | MR | Zbl
,Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 38 (1981) 29–40. | DOI | MR | Zbl
,Cité par Sources :