We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in , and provide a variant of Rashevsky−Chow theorem for approximate controllability of control-linear ensembles.
Accepté le :
DOI : 10.1051/cocv/2016029
Mots clés : Infinite-dimensional control systems, ensemble controllability, Lie algebraic methods
@article{COCV_2016__22_4_921_0, author = {Agrachev, Andrei and Baryshnikov, Yuliy and Sarychev, Andrey}, title = {Ensemble controllability by {Lie} algebraic methods}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {921--938}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016029}, zbl = {1350.93014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016029/} }
TY - JOUR AU - Agrachev, Andrei AU - Baryshnikov, Yuliy AU - Sarychev, Andrey TI - Ensemble controllability by Lie algebraic methods JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 921 EP - 938 VL - 22 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016029/ DO - 10.1051/cocv/2016029 LA - en ID - COCV_2016__22_4_921_0 ER -
%0 Journal Article %A Agrachev, Andrei %A Baryshnikov, Yuliy %A Sarychev, Andrey %T Ensemble controllability by Lie algebraic methods %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 921-938 %V 22 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016029/ %R 10.1051/cocv/2016029 %G en %F COCV_2016__22_4_921_0
Agrachev, Andrei; Baryshnikov, Yuliy; Sarychev, Andrey. Ensemble controllability by Lie algebraic methods. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 921-938. doi : 10.1051/cocv/2016029. http://www.numdam.org/articles/10.1051/cocv/2016029/
Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin. 26 (2009) 2503–2509. | DOI | Zbl
and ,A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). | Zbl
The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory 12 (1983) 335–347. | Zbl
and ,A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1–35. | Zbl
Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. | DOI | Zbl
, and ,Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. | DOI | Zbl
, and ,Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci. 292 (1981) 535–537. | Zbl
,B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649–658. | Zbl
Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal 32 (1980) 649–653 (in Russian). | Zbl
and ,On Infinite-Dimensional Variant of Rashevsky−Chow Theorem. Dokl. Akad. Nauk 398 (2004) 735–737.
,J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint [quant-ph] (2005). | arXiv
Control of inhomogeneous quantum ensembles. Phys.Rev. A 73 (2006) 030302. | DOI
and ,Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control 54 (2009) 528–536. | DOI | Zbl
and ,C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230–237. | Zbl
Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4. | DOI | Zbl
,Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math. 134 (2014) 229–246. | DOI | Zbl
and ,Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq. 20 (1976) 292–315. | DOI | Zbl
,Cité par Sources :