Ensemble controllability by Lie algebraic methods
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 921-938.

We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in R3, and provide a variant of Rashevsky−Chow theorem for approximate controllability of control-linear ensembles.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016029
Classification : 93C15, 93B05, 93B27
Mots-clés : Infinite-dimensional control systems, ensemble controllability, Lie algebraic methods
Agrachev, Andrei 1, 2 ; Baryshnikov, Yuliy 3 ; Sarychev, Andrey 4

1 International School for Advanced Studies (SISSA), v. Bonomea, 265, 34136 Trieste, Italy
2 Steklov Mathematical Institute, Russian Acad. Sciences, Moscow, Russia
3 University of Illinois at Urbana-Champaign 1409 W. Green Str., Urbana IL 61801, USA
4 University of Florence, DiMaI, v. delle Pandette 9, 50127 Firenze, Italy
@article{COCV_2016__22_4_921_0,
     author = {Agrachev, Andrei and Baryshnikov, Yuliy and Sarychev, Andrey},
     title = {Ensemble controllability by {Lie} algebraic methods},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {921--938},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016029},
     zbl = {1350.93014},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2016029/}
}
TY  - JOUR
AU  - Agrachev, Andrei
AU  - Baryshnikov, Yuliy
AU  - Sarychev, Andrey
TI  - Ensemble controllability by Lie algebraic methods
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 921
EP  - 938
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2016029/
DO  - 10.1051/cocv/2016029
LA  - en
ID  - COCV_2016__22_4_921_0
ER  - 
%0 Journal Article
%A Agrachev, Andrei
%A Baryshnikov, Yuliy
%A Sarychev, Andrey
%T Ensemble controllability by Lie algebraic methods
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 921-938
%V 22
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2016029/
%R 10.1051/cocv/2016029
%G en
%F COCV_2016__22_4_921_0
Agrachev, Andrei; Baryshnikov, Yuliy; Sarychev, Andrey. Ensemble controllability by Lie algebraic methods. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 921-938. doi : 10.1051/cocv/2016029. https://www.numdam.org/articles/10.1051/cocv/2016029/

A. Agrachev and M. Caponigro, Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin. 26 (2009) 2503–2509. | DOI | Zbl

A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). | Zbl

A. Agrachev and A. Sarychev, The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory 12 (1983) 335–347. | Zbl

A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1–35. | Zbl

J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. | DOI | Zbl

K. Beauchard, J.-M. Coron and P. Rouchon, Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. | DOI | Zbl

B. Bonnard, Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci. 292 (1981) 535–537. | Zbl

B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649–658. | Zbl

P.M. Dudnikov and S.N. Samborski, Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal 32 (1980) 649–653 (in Russian). | Zbl

Yu. Ledyaev, On Infinite-Dimensional Variant of Rashevsky−Chow Theorem. Dokl. Akad. Nauk 398 (2004) 735–737.

J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint [quant-ph] (2005). | arXiv

J.S. Li and N. Khaneja, Control of inhomogeneous quantum ensembles. Phys.Rev. A 73 (2006) 030302. | DOI

J.S. Li and N. Khaneja, Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control 54 (2009) 528–536. | DOI | Zbl

C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230–237. | Zbl

C. Lobry, Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4. | DOI | Zbl

M.K. Salehani and I. Markina, Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math. 134 (2014) 229–246. | DOI | Zbl

H.J. Sussmann, Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq. 20 (1976) 292–315. | DOI | Zbl

  • Scagliotti, Alessandro Minimax Problems for Ensembles of Control-Affine Systems, SIAM Journal on Control and Optimization, Volume 63 (2025) no. 1, p. 502 | DOI:10.1137/24m167531x
  • van Ackooij, Wim; Henrion, René; Zidani, Hasnaa Pontryagin’s Principle for Some Probabilistic Control Problems, Applied Mathematics Optimization, Volume 90 (2024) no. 1 | DOI:10.1007/s00245-024-10151-4
  • Tiwari, Archana; Padhan, Rudra Narayan; Pati, Kishor Chandra On controllability of driftless control systems on symmetric spaces, Arabian Journal of Mathematics, Volume 13 (2024) no. 3, p. 689 | DOI:10.1007/s40065-024-00469-w
  • Schönlein, Michael Polynomial methods to construct inputs for uniformly ensemble reachable linear systems, Mathematics of Control, Signals, and Systems, Volume 36 (2024) no. 2, p. 251 | DOI:10.1007/s00498-023-00364-3
  • Danhane, Baparou; Lohéac, Jérôme Ensemble controllability of parabolic type equations, Systems Control Letters, Volume 183 (2024), p. 105683 | DOI:10.1016/j.sysconle.2023.105683
  • Geshkovski, Borjan; Zuazua, Enrique Turnpike in optimal control of PDEs, ResNets, and beyond, Acta Numerica, Volume 31 (2022), p. 135 | DOI:10.1017/s0962492922000046
  • Koch, Christiane P.; Boscain, Ugo; Calarco, Tommaso; Dirr, Gunther; Filipp, Stefan; Glaser, Steffen J.; Kosloff, Ronnie; Montangero, Simone; Schulte-Herbrüggen, Thomas; Sugny, Dominique; Wilhelm, Frank K. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technology, Volume 9 (2022) no. 1 | DOI:10.1140/epjqt/s40507-022-00138-x
  • Schönlein, Michael Feedback equivalence and uniform ensemble reachability, Linear Algebra and its Applications, Volume 646 (2022), p. 175 | DOI:10.1016/j.laa.2022.03.026
  • Schönlein, Michael Computation of open-loop inputs for uniformly ensemble controllable systems, Mathematical Control and Related Fields, Volume 12 (2022) no. 3, p. 813 | DOI:10.3934/mcrf.2021046
  • Lazar, Martin; Lohéac, Jérôme Control of parameter dependent systems, Numerical Control: Part A, Volume 23 (2022), p. 265 | DOI:10.1016/bs.hna.2021.12.008
  • Zeng, Shen; Li, Jr-Shin An operator theoretic approach to linear ensemble control, Systems Control Letters, Volume 168 (2022), p. 105350 | DOI:10.1016/j.sysconle.2022.105350
  • Dirr, Gunther; Schönlein, Michael Uniform and L-ensemble reachability of parameter-dependent linear systems, Journal of Differential Equations, Volume 283 (2021), p. 216 | DOI:10.1016/j.jde.2021.02.032
  • Zhang, Wei; Li, Jr-Shin Ensemble Control on Lie Groups, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 5, p. 3805 | DOI:10.1137/20m1357354
  • Chen, Xudong, 2020 Information Theory and Applications Workshop (ITA) (2020), p. 1 | DOI:10.1109/ita50056.2020.9244972
  • Chen, Xudong Ensemble observability of Bloch equations with unknown population density, Automatica, Volume 119 (2020), p. 109057 | DOI:10.1016/j.automatica.2020.109057
  • Agrachev, Andrei; Sarychev, Andrey Control in the Spaces of Ensembles of Points, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 3, p. 1579 | DOI:10.1137/19m1273049
  • Chen, Xudong Controllability of continuum ensemble of formation systems over directed graphs, Automatica, Volume 108 (2019), p. 108497 | DOI:10.1016/j.automatica.2019.108497
  • Chen, Xudong Structure theory for ensemble controllability, observability, and duality, Mathematics of Control, Signals, and Systems, Volume 31 (2019) no. 2, p. 1 | DOI:10.1007/s00498-019-0237-5
  • Augier, Nicolas; Boscain, Ugo; Sigalotti, Mario Adiabatic Ensemble Control of a Continuum of Quantum Systems, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 6, p. 4045 | DOI:10.1137/17m1140327
  • Chittaro, Francesca C.; Gauthier, Jean-Paul Asymptotic ensemble stabilizability of the Bloch equation, Systems Control Letters, Volume 113 (2018), p. 36 | DOI:10.1016/j.sysconle.2018.01.008
  • Chen, Xudong; Gharesifard, Bahman, 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017), p. 1963 | DOI:10.1109/cdc.2017.8263936
  • Boscain, Ugo; Sigalotti, Mario, 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017), p. 6143 | DOI:10.1109/cdc.2017.8264585

Cité par 22 documents. Sources : Crossref