We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in
Accepté le :
DOI : 10.1051/cocv/2016029
Mots-clés : Infinite-dimensional control systems, ensemble controllability, Lie algebraic methods
@article{COCV_2016__22_4_921_0, author = {Agrachev, Andrei and Baryshnikov, Yuliy and Sarychev, Andrey}, title = {Ensemble controllability by {Lie} algebraic methods}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {921--938}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016029}, zbl = {1350.93014}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2016029/} }
TY - JOUR AU - Agrachev, Andrei AU - Baryshnikov, Yuliy AU - Sarychev, Andrey TI - Ensemble controllability by Lie algebraic methods JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 921 EP - 938 VL - 22 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016029/ DO - 10.1051/cocv/2016029 LA - en ID - COCV_2016__22_4_921_0 ER -
%0 Journal Article %A Agrachev, Andrei %A Baryshnikov, Yuliy %A Sarychev, Andrey %T Ensemble controllability by Lie algebraic methods %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 921-938 %V 22 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016029/ %R 10.1051/cocv/2016029 %G en %F COCV_2016__22_4_921_0
Agrachev, Andrei; Baryshnikov, Yuliy; Sarychev, Andrey. Ensemble controllability by Lie algebraic methods. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 921-938. doi : 10.1051/cocv/2016029. https://www.numdam.org/articles/10.1051/cocv/2016029/
Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin. 26 (2009) 2503–2509. | DOI | Zbl
and ,A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). | Zbl
The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory 12 (1983) 335–347. | Zbl
and ,A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1–35. | Zbl
Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. | DOI | Zbl
, and ,Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. | DOI | Zbl
, and ,Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci. 292 (1981) 535–537. | Zbl
,B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649–658. | Zbl
Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal 32 (1980) 649–653 (in Russian). | Zbl
and ,On Infinite-Dimensional Variant of Rashevsky−Chow Theorem. Dokl. Akad. Nauk 398 (2004) 735–737.
,J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint [quant-ph] (2005). | arXiv
Control of inhomogeneous quantum ensembles. Phys.Rev. A 73 (2006) 030302. | DOI
and ,Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control 54 (2009) 528–536. | DOI | Zbl
and ,C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230–237. | Zbl
Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4. | DOI | Zbl
,Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math. 134 (2014) 229–246. | DOI | Zbl
and ,Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq. 20 (1976) 292–315. | DOI | Zbl
,- Minimax Problems for Ensembles of Control-Affine Systems, SIAM Journal on Control and Optimization, Volume 63 (2025) no. 1, p. 502 | DOI:10.1137/24m167531x
- Pontryagin’s Principle for Some Probabilistic Control Problems, Applied Mathematics Optimization, Volume 90 (2024) no. 1 | DOI:10.1007/s00245-024-10151-4
- On controllability of driftless control systems on symmetric spaces, Arabian Journal of Mathematics, Volume 13 (2024) no. 3, p. 689 | DOI:10.1007/s40065-024-00469-w
- Polynomial methods to construct inputs for uniformly ensemble reachable linear systems, Mathematics of Control, Signals, and Systems, Volume 36 (2024) no. 2, p. 251 | DOI:10.1007/s00498-023-00364-3
- Ensemble controllability of parabolic type equations, Systems Control Letters, Volume 183 (2024), p. 105683 | DOI:10.1016/j.sysconle.2023.105683
- Turnpike in optimal control of PDEs, ResNets, and beyond, Acta Numerica, Volume 31 (2022), p. 135 | DOI:10.1017/s0962492922000046
- Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technology, Volume 9 (2022) no. 1 | DOI:10.1140/epjqt/s40507-022-00138-x
- Feedback equivalence and uniform ensemble reachability, Linear Algebra and its Applications, Volume 646 (2022), p. 175 | DOI:10.1016/j.laa.2022.03.026
- Computation of open-loop inputs for uniformly ensemble controllable systems, Mathematical Control and Related Fields, Volume 12 (2022) no. 3, p. 813 | DOI:10.3934/mcrf.2021046
- Control of parameter dependent systems, Numerical Control: Part A, Volume 23 (2022), p. 265 | DOI:10.1016/bs.hna.2021.12.008
- An operator theoretic approach to linear ensemble control, Systems Control Letters, Volume 168 (2022), p. 105350 | DOI:10.1016/j.sysconle.2022.105350
- Uniform and L-ensemble reachability of parameter-dependent linear systems, Journal of Differential Equations, Volume 283 (2021), p. 216 | DOI:10.1016/j.jde.2021.02.032
- Ensemble Control on Lie Groups, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 5, p. 3805 | DOI:10.1137/20m1357354
- , 2020 Information Theory and Applications Workshop (ITA) (2020), p. 1 | DOI:10.1109/ita50056.2020.9244972
- Ensemble observability of Bloch equations with unknown population density, Automatica, Volume 119 (2020), p. 109057 | DOI:10.1016/j.automatica.2020.109057
- Control in the Spaces of Ensembles of Points, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 3, p. 1579 | DOI:10.1137/19m1273049
- Controllability of continuum ensemble of formation systems over directed graphs, Automatica, Volume 108 (2019), p. 108497 | DOI:10.1016/j.automatica.2019.108497
- Structure theory for ensemble controllability, observability, and duality, Mathematics of Control, Signals, and Systems, Volume 31 (2019) no. 2, p. 1 | DOI:10.1007/s00498-019-0237-5
- Adiabatic Ensemble Control of a Continuum of Quantum Systems, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 6, p. 4045 | DOI:10.1137/17m1140327
- Asymptotic ensemble stabilizability of the Bloch equation, Systems Control Letters, Volume 113 (2018), p. 36 | DOI:10.1016/j.sysconle.2018.01.008
- , 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017), p. 1963 | DOI:10.1109/cdc.2017.8263936
- , 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017), p. 6143 | DOI:10.1109/cdc.2017.8264585
Cité par 22 documents. Sources : Crossref