In this paper we introduce a novel certified shape optimization strategy – named Certified Descent Algorithm (CDA) – to account for the numerical error introduced by the Finite Element approximation of the shape gradient. We present a goal-oriented procedure to derive a certified upper bound of the error in the shape gradient and we construct a fully-computable, constant-free a posteriori error estimator inspired by the complementary energy principle. The resulting CDA is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion. After validating the error estimator, some numerical simulations of the resulting certified shape optimization strategy are presented for the well-known inverse identification problem of Electrical Impedance Tomography.
Accepté le :
DOI : 10.1051/cocv/2016021
Mots clés : Shape optimization, A posteriori error estimator, Certified Descent Algorithm, Electrical Impedance Tomography
@article{COCV_2017__23_3_977_0, author = {Giacomini, Matteo and Pantz, Olivier and Trabelsi, Karim}, title = {Certified {Descent} {Algorithm} for shape optimization driven by fully-computable a posteriori error estimators}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {977--1001}, publisher = {EDP-Sciences}, volume = {23}, number = {3}, year = {2017}, doi = {10.1051/cocv/2016021}, mrnumber = {3660456}, zbl = {1369.49060}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016021/} }
TY - JOUR AU - Giacomini, Matteo AU - Pantz, Olivier AU - Trabelsi, Karim TI - Certified Descent Algorithm for shape optimization driven by fully-computable a posteriori error estimators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 977 EP - 1001 VL - 23 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016021/ DO - 10.1051/cocv/2016021 LA - en ID - COCV_2017__23_3_977_0 ER -
%0 Journal Article %A Giacomini, Matteo %A Pantz, Olivier %A Trabelsi, Karim %T Certified Descent Algorithm for shape optimization driven by fully-computable a posteriori error estimators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 977-1001 %V 23 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016021/ %R 10.1051/cocv/2016021 %G en %F COCV_2017__23_3_977_0
Giacomini, Matteo; Pantz, Olivier; Trabelsi, Karim. Certified Descent Algorithm for shape optimization driven by fully-computable a posteriori error estimators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 977-1001. doi : 10.1051/cocv/2016021. http://www.numdam.org/articles/10.1051/cocv/2016021/
Shape methods for the transmission problem with a single measurement. Numer. Func. Anal. Opt. 28 (2007) 519–551. | DOI | MR | Zbl
, and ,On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47 (2008) 1556–1590. | DOI | MR | Zbl
, and ,F. Alauzet, B. Mohammadi and O. Pironneau, Mesh adaptivity and optimal shape design for aerospace. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, edited by G. Buttazzo and A. Frediani. Optimization and Its Applications. Springer US (2012) 323–337.
Structural optimization with FreeFem++. Struct. Multidisc. Optim. 32 (2006) 173–181. | DOI | MR | Zbl
and ,Acousto-electromagnetic tomography. SIAM J. Appl. Math. 72 (2012) 1592–1617. | DOI | MR | Zbl
, , and ,H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique. In Computer Aided Optimization Design of Structures V, edited by S. Hernandez and C. Brebbia. Computational Mechanics Publications (1997) 309–326.
Mesh refinement for shape optimization. Struct. Optim. 9 (1995) 46–51. | DOI
, , and ,Electrical impedance tomography. Inverse Probl. 18 (2002) R99. | DOI | MR | Zbl
,A. Calderón, On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro 1980). Soc. Brasil. Mat. (1980) 65–73. | MR | Zbl
Hybrid topological derivative and gradient-based methods for electrical impedance tomography. Inverse Probl. 28 (2012) 095010. | DOI | MR | Zbl
and ,Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. ESAIM: M2AN 20 (1986) 371–402. | DOI | Numdam | MR | Zbl
,Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. | DOI | MR | Zbl
, and ,Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205 (2005) 357–372. | DOI | MR | Zbl
, and ,M. Delfour and J.-P. Zolésio, Shapes and geometries: analysis, differential calculus, and optimization. SIAM, Philadelphia, USA (2001). | MR | Zbl
Discrete gradient flows for shape optimization and applications. Special Issue Honoring the 80th Birthday of Professor Ivo Babuka. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3898–3914. | DOI | MR | Zbl
, , and ,A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybernet. 34 (2005) 203–225. | MR | Zbl
and ,Anisotropic mesh adaption in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511–533. | DOI | MR | Zbl
, and ,Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comput. Methods Appl. Mech. Engrg. 195 (2006) 5673–5684. | DOI | MR | Zbl
and ,New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl
,Electrical impedance tomography: from topology to shape. Control Cybern. 37 (2008) 913–933. | MR | Zbl
and ,Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36 (2012) 235–265. | DOI | MR | Zbl
, and ,Comparison of approximate shape gradients. BIT Numer. Math. 54 (2014) 1–27. | MR | Zbl
, and ,D. Holder, Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering. CRC Press (2004).
An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: COCV 18 (2012) 1027–1048. | Numdam | MR | Zbl
and ,Adaptive Finite Element Methods for shape optimization of linearly elastic structures. Comput. Methods Appl. Mech. Eng. 57 (1986) 67–89. | DOI | MR | Zbl
, , and ,Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40 (1987) 745–777. | DOI | MR | Zbl
and ,Distributed shape derivative via averaged adjoint method and applications. ESAIM: M2AN 50 (2016) 1241–1267. | DOI | Numdam | MR | Zbl
and ,Adaptive finite element method for shape optimization. ESAIM: COCV 18 (2012) 1122–1149. | Numdam | MR | Zbl
, , and ,Goal-oriented error estimation and adaptivity for the Finite Element Method. Comput. Math. Appl. 41 (2001) 735–756. | DOI | MR | Zbl
and ,O. Pantz, Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris, Ser. I (2005) 333–337. | MR | Zbl
Anisotropic mesh adaptation driven by a recovery-based error estimator for shallow water flow modeling. Int. J. Numer. Methods Fluids 70 (2012) 269–299. | DOI | MR | Zbl
, and ,Practical methods for a posteriori error estimation in engineering applications. Int. J. Numer. Methods Engrg. 56 (2003) 1193–1224. | DOI | MR | Zbl
, , , and ,A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69 (2000) 481–500. | DOI | MR | Zbl
,Adaptive Newton-like method for shape optimization. Control Cybern. 34 (2005) 363–377. | MR | Zbl
,Goal-oriented explicit residual-type error estimates in XFEM. Comput. Mech. 52 (2013) 361–376. | DOI | MR | Zbl
, and ,Adaptive FE-procedures in shape optimization. Struct. Multidisc. Optim. 19 (2000) 282–302. | DOI
, and ,J. Sokołowski and J. Zolésio, Introduction to shape optimization: shape sensitivity analysis. Springer-Verlag (1992). | MR | Zbl
A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125 (1987) 153–169. | DOI | MR | Zbl
and ,Complementary error bounds for elliptic systems and applications. Appl. Math. Comput. 219 (2013) 7194–7205. | DOI | MR | Zbl
,Impedance-computed tomography algorithm and system. Appl. Opt. 24 (1985) 3985–3992. | DOI
, and ,Cité par Sources :