The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 851-868.

We study the inverse of the divergence operator on a domain ΩR 3 perforated by a system of tiny holes. We show that such inverse can be constructed on the Lebesgue space L p (Ω) for any 1<p<3, with a norm independent of perforation, provided the holes are suitably small and their mutual distance suitably large. Applications are given to problems arising in homogenization of steady compressible fluid flows.

Reçu le :
DOI : 10.1051/cocv/2016016
Classification : 35B27, 35Q30, 35Q35
Mots clés : Perforated domains, Bogovskii type operators, homogenization, compressible Navier–Stokes system
Diening, Lars 1 ; Feireisl, Eduard 2 ; Lu, Yong 3

1 Institute of Mathematics, Universität Osnabrück, Albrechtstr. 28a, 49076 Osnabrück, Germany
2 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Zitná 25, 115 67 Praha 1, Czech Republic
3 Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha, Czech Republic
@article{COCV_2017__23_3_851_0,
     author = {Diening, Lars and Feireisl, Eduard and Lu, Yong},
     title = {The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible {Navier{\textendash}Stokes} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {851--868},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016016},
     mrnumber = {3660451},
     zbl = {1375.35026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016016/}
}
TY  - JOUR
AU  - Diening, Lars
AU  - Feireisl, Eduard
AU  - Lu, Yong
TI  - The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 851
EP  - 868
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016016/
DO  - 10.1051/cocv/2016016
LA  - en
ID  - COCV_2017__23_3_851_0
ER  - 
%0 Journal Article
%A Diening, Lars
%A Feireisl, Eduard
%A Lu, Yong
%T The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 851-868
%V 23
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016016/
%R 10.1051/cocv/2016016
%G en
%F COCV_2017__23_3_851_0
Diening, Lars; Feireisl, Eduard; Lu, Yong. The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 851-868. doi : 10.1051/cocv/2016016. http://www.numdam.org/articles/10.1051/cocv/2016016/

G. Acosta, R.G. Durán and M.A. Muschietti, Solutions of the divergence operator on John domains. Adv. Math. 206 (2006) 373–401. | DOI | MR | Zbl

G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203–222. | MR | Zbl

G. Allaire, Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 209–259. | DOI | MR | Zbl

G. Allaire, Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 261–298. | DOI | MR | Zbl

M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad. Tr. Sem. S.L. Soboleva 80 (1980) 5–40. In Russian. | MR | Zbl

J. Březina and A. Novotný, On weak solutions of steady Navier−Stokes equations for monatomic gas. Comment. Math. Univ. Carolin. 49 (2008) 611–632. | MR | Zbl

L. Diening, M.Rzůžička and K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. 35 (2010) 87–114. | DOI | MR | Zbl

R.J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl

E. Feireisl and Y. Lu, Homogenization of stationary Navier−Stokes equations in domains with tiny holes. J. Math. Fluid Mech. 17 (2015) 381–392. | DOI | MR | Zbl

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier−Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3 (2001) 358–392. | DOI | MR | Zbl

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser Verlag, Basel (2009). | MR | Zbl

E. Feireisl, A. Novotný and T. Takahashi, Homogenization and singular limits for the complete Navier−Stokes−Fourier system. J. Math. Pures Appl. 94 (2010) 33–57. | DOI | MR | Zbl

E. Feireisl, Y. Namlyeyeva and Š. Nečasová, Homogenization of the evolutionary Navier−-Stokes system. Manusc. Math. 149 (2016) 251–274. | DOI | MR | Zbl

J. Frehse, M. Steinhauer and W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions. Journal de Mathématiques Pures et Appliquées 97 (2012) 85–97. | DOI | MR | Zbl

G.P. Galdi, An Introduction to the Mathematical Theory of the Navier−Stokes Equations: Steady-State Problems. Springer Science and Business Media (2011). | MR | Zbl

P.-L. Lions,Mathematical topics in fluid dynamics, Compressible models. Oxford Science Publication, Oxford (1998). Vol. 2. | MR | Zbl

N. Masmoudi, Homogenization of the compressible Navier−Stokes equations in a porous medium. ESAIM: COCV 8 (2002) 885–906. | Numdam | MR | Zbl

A. Mikelić, Homogenization of nonstationary Navier−Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. 158 (1991) 167–179. | DOI | MR | Zbl

A. Novotný and I. Straskraba,Introduction to the mathematical theory of compressible flow. Oxford University Press, Oxford (2004). | MR | Zbl

P. Plotnikov and J. Sokolowski, Compressible Navier−Stokes equations. Vol. 73 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser/Springer Basel AG, Basel (2012). Theory and shape optimization. | MR | Zbl

P. Plotnikov and W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ(1,). J. Math. Pures Appl. 104 (2015) 58–82. | DOI | MR | Zbl

E. Sánchez-Palencia, Non homogeneous media and vibration theory. Vol. 127 of Lect. Notes Phys. Springer-Verlag (1980). | MR | Zbl

L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368–377.

Cité par Sources :