In this paper we study a control problem for a Kirchhoff-type equation. The method to obtain first order necessary optimality conditions is the Dubovitskii–Milyoutin formalism because the classical arguments do not work. We obtain a characterization of the optimal control by a partial differential system which is solved numerically.
Mots-clés : Optimal control, optimality system, adjoint problem, Euler–Lagrange equation, Kirchhoff equation
@article{COCV_2017__23_3_773_0, author = {Delgado, M. and Figueiredo, G. M. and Gayte, I. and Morales-Rodrigo, C.}, title = {An optimal control problem for a {Kirchhoff-type} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {773--790}, publisher = {EDP-Sciences}, volume = {23}, number = {3}, year = {2017}, doi = {10.1051/cocv/2016013}, mrnumber = {3660448}, zbl = {06736464}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016013/} }
TY - JOUR AU - Delgado, M. AU - Figueiredo, G. M. AU - Gayte, I. AU - Morales-Rodrigo, C. TI - An optimal control problem for a Kirchhoff-type equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 773 EP - 790 VL - 23 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016013/ DO - 10.1051/cocv/2016013 LA - en ID - COCV_2017__23_3_773_0 ER -
%0 Journal Article %A Delgado, M. %A Figueiredo, G. M. %A Gayte, I. %A Morales-Rodrigo, C. %T An optimal control problem for a Kirchhoff-type equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 773-790 %V 23 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016013/ %R 10.1051/cocv/2016013 %G en %F COCV_2017__23_3_773_0
Delgado, M.; Figueiredo, G. M.; Gayte, I.; Morales-Rodrigo, C. An optimal control problem for a Kirchhoff-type equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 773-790. doi : 10.1051/cocv/2016013. http://www.numdam.org/articles/10.1051/cocv/2016013/
On the nonlinear Timoshenko-Kirchhoff beam equation. Chin. Annal. Math. 20 (1999) 495–506. | DOI | MR | Zbl
,On a class of nonlocal nonlinear problems. RAIRO Model. Math. Anal. Numer. 26 (1992) 447–467. | DOI | Numdam | MR | Zbl
and ,L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Berkeley (1997). | MR | Zbl
Study of a nonlinear Kirchhoff equation with non-homogeneous material. J. Math. Anal. Appl. 416 (2014) 597–608. | DOI | MR | Zbl
, , and ,G.B. Folland, Real Analysis. Modern Techniques and Their Applications. A Wiley-Interscience publication, New York (1984). | MR | Zbl
I.V. Girsanov, Lectures on mathematical theory of extremum problems. Vol. 67 of Lectures notes in Economics and mathematical systems. Springer Verlag, Berlin (1972). | MR | Zbl
Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal. 50 (2012) 657–668. | DOI | MR | Zbl
,G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).
J.L. Lions, Contrôle optimal de systèmes gouvernés par des Équations aux dérivées partielles. Dunod, Paris (1968). | MR | Zbl
J.L. Lions, On some questions in boundary value problems of Mathematical Physics, in International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977. Vol. 30 of Mathematical Studies (1978) 284–346. | MR | Zbl
Optimality conditions for semi linear elliptic equations with leading term containing control. SIAM J. Control Optim. 48 (2009) 2366–2387. | DOI | MR | Zbl
and ,Existence results and numerical solutions for a beam equation with nonlinear boundary conditions. Appl. Numer. Math. 47 (2003) 189–196. | DOI | MR | Zbl
,Remarks on a elliptic equation of Kirchhoff type. Nonlin. Anal. 63 (2005) 1967–1977. | DOI | Zbl
,Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16 (2003) 243–248. | DOI | MR | Zbl
and ,R.G. Nascimento, Problemas elípticos não locais do tipo p-Kirchhoff. Doct. dissertation, Unicamp (2008).
A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 102 (2005) 311–342. | DOI | MR | Zbl
,W. Rudin, Functional Analysis. Mc Graw-Hill, Inc. (1991). | MR | Zbl
Some properties of cones in normed spaces and their applications to investigating extremal problems. J. Optim. Theory Appl. 42 (1984) 561–582. | DOI | MR | Zbl
,Cité par Sources :