Optimal design problems for Schrödinger operators with noncompact resolvents
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 627-635.

We consider optimization problems for cost functionals which depend on the negative spectrum of Schrödinger operators of the form -Δ+V(x), where V is a potential, with prescribed compact support, which has to be determined. Under suitable assumptions the existence of an optimal potential is shown. This can be applied to interesting cases such as costs functions involving finitely many negative eigenvalues.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016009
Classification : 49J45, 35J10, 58C40, 49R05, 35P15
Mots-clés : Optimal potentials, Schrödinger operators, Lieb–Thirring inequality
Bouchitté, Guy 1 ; Buttazzo, Giuseppe 2

1 Laboratoire IMATH, Université de Toulon, BP 20132, 83957 La Garde cedex, France
2 Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
@article{COCV_2017__23_2_627_0,
     author = {Bouchitt\'e, Guy and Buttazzo, Giuseppe},
     title = {Optimal design problems for {Schr\"odinger} operators with noncompact resolvents},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {627--635},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2016009},
     mrnumber = {3608096},
     zbl = {1358.49014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016009/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Buttazzo, Giuseppe
TI  - Optimal design problems for Schrödinger operators with noncompact resolvents
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 627
EP  - 635
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016009/
DO  - 10.1051/cocv/2016009
LA  - en
ID  - COCV_2017__23_2_627_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Buttazzo, Giuseppe
%T Optimal design problems for Schrödinger operators with noncompact resolvents
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 627-635
%V 23
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016009/
%R 10.1051/cocv/2016009
%G en
%F COCV_2017__23_2_627_0
Bouchitté, Guy; Buttazzo, Giuseppe. Optimal design problems for Schrödinger operators with noncompact resolvents. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 627-635. doi : 10.1051/cocv/2016009. http://www.numdam.org/articles/10.1051/cocv/2016009/

G. Bouchitté, M.L. Mascarenhas and L. Trabucho, On the curvature and torsion effects in one dimensional waveguides. ESAIM: COCV 13 (2007) 793–808. | Numdam | MR | Zbl

G. Bouchitté, M.L. Mascarenhas and L. Trabucho, Thin waveguides with Robin boundary conditions. J. Math. Phys. 53 (2012) 123517. | DOI | MR | Zbl

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems. Vol. 65 of Progress in Nonlinear Differential Equations. Birkhäuser Verlag, Basel (2005). | MR | Zbl

G. Buttazzo, Spectral optimization problems. Rev. Mat. Complut. 24 (2011) 277–322. | DOI | MR | Zbl

G. Buttazzo, A. Gerolin, B. Ruffini and B. Velichkov, Optimal Potentials for Schrödinger Operators. J. École Polytech. 1 (2014) 71–100. | DOI | MR | Zbl

E.A. Carlen, R.L. Frank and E.H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator. Geom. Funct. Anal. 24 (1) (2014) 63–84. | DOI | MR | Zbl

B. Chenaud, P. Duclos, P. Freitas and D. Krejčiřik, Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23 (2005) 95–105. | DOI | MR | Zbl

P. Duclos and P. Exner,Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995) 73–102. | DOI | MR | Zbl

C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. Vol. 38 of Research in Applied Mathematics. John Wiley & Sons, Masson, Paris (1995) | MR | Zbl

A. Laptev and T. Weidl, Sharp Lieb−Thirring inequalities in high dimensions. Acta Math. 184 (2000) 87–111. | DOI | MR | Zbl

E.H. Lieb, Lieb−Thirring inequalities. Preprint (2000). | arXiv

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, San Diego (1978). | MR

Cité par Sources :