The paper concerns on an infinite dimensional Hilbert space, the existence and uniqueness of absolutely continuous solutions, for Lipschitz single-valued perturbations of evolution problems involving maximal-monotone operators. This result allows us to extend to optimal control problems associated with such equations, the relaxation theorems with Young measures proved recently in [S. Saïdi, L. Thibault and M.F. Yarou, Numer. Funct. Anal. Optim. 34 (2013) 1156–1186].
Accepté le :
DOI : 10.1051/cocv/2015056
Mots-clés : Maximal monotone operators, optimal control, pseudo-distance, Lipschitz perturbation, absolutely continuous, Young measures
@article{COCV_2017__23_2_455_0, author = {Sa{\"\i}di, Soumia and Yarou, Mustapha Fateh}, title = {Control problems governed by time-dependent maximal monotone operators}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {455--473}, publisher = {EDP-Sciences}, volume = {23}, number = {2}, year = {2017}, doi = {10.1051/cocv/2015056}, mrnumber = {3608089}, zbl = {1367.34083}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015056/} }
TY - JOUR AU - Saïdi, Soumia AU - Yarou, Mustapha Fateh TI - Control problems governed by time-dependent maximal monotone operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 455 EP - 473 VL - 23 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015056/ DO - 10.1051/cocv/2015056 LA - en ID - COCV_2017__23_2_455_0 ER -
%0 Journal Article %A Saïdi, Soumia %A Yarou, Mustapha Fateh %T Control problems governed by time-dependent maximal monotone operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 455-473 %V 23 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015056/ %R 10.1051/cocv/2015056 %G en %F COCV_2017__23_2_455_0
Saïdi, Soumia; Yarou, Mustapha Fateh. Control problems governed by time-dependent maximal monotone operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 455-473. doi : 10.1051/cocv/2015056. http://www.numdam.org/articles/10.1051/cocv/2015056/
J.P. Aubin and A. Celina, Differential inclusions, Set-valued maps and viability theory. Springer-Verlag Berlin Heidelberg (1984). | MR | Zbl
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Lect. Notes Math. North-Holland (1973). | MR | Zbl
Functional evolution equations governed by nonconvex sweeping process. J. Nonlin. Convex Anal. 2 (2001) 217–241. | MR | Zbl
, and ,Control problems governed by functional evolution inclusions with Young measures. J. Nonlin. Convex Anal. 5 (2004) 131–152. | MR | Zbl
, and ,C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on Topological Spaces With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht (2004). | MR | Zbl
Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. Ser. B 104 (2005) 347–373. | DOI | MR | Zbl
and ,Sur la généralisation de la notion de commande d’un système guidable. Rev. Française Inform. Rech. Oper. 4 (1967) 7–32. | Numdam | MR | Zbl
,A. Jawhar, Existence de solutions optimales pour des problèmes de contrôle de systèmes gouvernés par des équations différentielles multivoques. Sém. Anal. Convexe Montpellier exposé No, 1, Montpellier, France (1985). | MR | Zbl
BV solutions to evolution problems with time-dependent domains. Set-Valued Anal. 5 (1997) 57–72. | DOI | MR | Zbl
and ,V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract spaces. Pergamon Press, Oxford (1991). | MR | Zbl
M.D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems Shocks and Dry Friction. Birkhäuser-Verlag, Basel (1993). | MR | Zbl
Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Eq. 26 (1977) 347–374. | DOI | MR | Zbl
,S. Saïdi and M.F. Yarou, Control and viscosity results for problems governed by maximal monotone operators. To be submitted (2017).
Relaxation of optimal control problems involving time dependent subdifferential operators. Numer. Funct. Anal. Optim. 34 (2013) 1156–1186. | DOI | MR | Zbl
, and ,Nonstationary dissipative evolution equations in a Hilbert space. Nonlin. Anal. 17 (1991) 499–518. | DOI | MR | Zbl
,J. Warga, Optimal control of differential and functional equations. Academic Press, New York (1972). | MR | Zbl
Cité par Sources :