We consider differential-algebraic systems (DAEs) whose transfer function is outer: ., it has full row rank and all transmission zeros lie in the closed left half complex plane. We characterize outer, with the aid of the Kronecker structure of the system pencil and the Smith–McMillan structure of the transfer function, as the following property of a behavioural stabilizable and detectable realization: each consistent initial value can be asymptotically controlled to zero while the output can be made arbitrarily small in the -norm. The zero dynamics of systems with outer transfer functions are analyzed. We further show that our characterizations of outer provide a simple and very structured analysis of the linear-quadratic optimal control problem.
Accepté le :
DOI : 10.1051/cocv/2015051
Mots clés : Differential-algebraic equations, outer transfer function, matrix pencils, zero dynamics, minimum phase, optimal control
@article{COCV_2017__23_2_391_0, author = {Ilchmann, Achim and Reis, Timo}, title = {Outer transfer functions of differential-algebraic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {391--425}, publisher = {EDP-Sciences}, volume = {23}, number = {2}, year = {2017}, doi = {10.1051/cocv/2015051}, zbl = {1358.93051}, mrnumber = {3608086}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015051/} }
TY - JOUR AU - Ilchmann, Achim AU - Reis, Timo TI - Outer transfer functions of differential-algebraic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 391 EP - 425 VL - 23 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015051/ DO - 10.1051/cocv/2015051 LA - en ID - COCV_2017__23_2_391_0 ER -
%0 Journal Article %A Ilchmann, Achim %A Reis, Timo %T Outer transfer functions of differential-algebraic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 391-425 %V 23 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015051/ %R 10.1051/cocv/2015051 %G en %F COCV_2017__23_2_391_0
Ilchmann, Achim; Reis, Timo. Outer transfer functions of differential-algebraic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 391-425. doi : 10.1051/cocv/2015051. http://www.numdam.org/articles/10.1051/cocv/2015051/
T. Berger and T. Reis, Controllability of linear differential-algebraic systems – a survey. In Surveys in Differential-Algebraic Equations I, edited by Achim Ilchmann and Timo Reis. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin-Heidelberg (2013) 1–61. | MR | Zbl
Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal. Appl. 34 (2013) 94–101. | DOI | MR | Zbl
and ,Kalman controllability decompositions for differential-algebraic systems. Syst. Control Lett. 71 (2014) 54–61. | DOI | MR | Zbl
and ,Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36 (1991) 1122–1137. | DOI | MR | Zbl
and ,A state-space approach to indefinite spectral factorization. SIAM J. Matrix Anal. Appl. 21 (2000) 743–767. | DOI | MR | Zbl
,Spectral factorisation with imaginary axis zeros. Lin. Alg. Appl. 250 (1997) 225–252. | DOI | MR | Zbl
, , and ,Spectral factorization via Hermitian pencils. Lin. Alg. Appl. 122–124 (1989) 797–846. | DOI | MR | Zbl
and ,P. Colaneri, J.C. Geromel and A. Locatelli, Control Theory and Design: an RH and RH viewpoint. Academic Press, London (1997).
R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995). | MR | Zbl
Liyi Dai, Singular Control Systems. Springer-Verlag, Berlin (1989). | MR | Zbl
B.A. Francis, A Course in Control Theory. Springer-Verlag, Berlin-Heidelberg-New York (1987). | MR | Zbl
F.R. Gantmacher, The Theory of Matrices, Vol. II. Chelsea, New York (1959). | MR
On inner-outer factorization. Syst. Control Lett. 11 (1988) 93–97. | DOI | MR | Zbl
,D. Hinrichsen and A.J. Pritchard, Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Springer-Verlag, Berlin (2005). | MR | Zbl
Adaptive controllers and root-loci of minimum phase systems. Dynamics and Control 4 (1994) 203–226. | DOI | MR | Zbl
,On minimum phase. Automatisierungstechnik 12 (2013) 805–817. | DOI
and ,Minimum-phase infinite-dimensional second-order systems. IEEE Trans. Autom. Control 52 (2007) 1654–1665. | DOI | MR | Zbl
, and ,T. Kailath, Linear Systems. Prentice-Hall, Englewood Cliffs, NJ (1980). | MR | Zbl
P. Lancaster and L. Rodman, Algebraic Riccati Equations. Clarendon Press, Oxford (1995). | MR | Zbl
N.K. Nikol’skiĭ, Treatise on the shift operator. Springer-Verlag, Berlin (1986).
Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach. Int. J. Appl. Math. Comput. Sci. 11 (2001) 1249–1260. | MR | Zbl
,J.W. Polderman and J.C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer-Verlag, New York (1998). | MR | Zbl
Lur’e equations and even matrix pencils. Lin. Alg. Appl. 434 (2011) 152–173. | DOI | MR | Zbl
,The zeros of a system. Int. J. Control 18 (1973) 297–299. | DOI | Zbl
,M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory. Clarendon Press, Oxford (1985). | MR | Zbl
H.L. Trentelman, A.A. Stoorvogel and M.L.J. Hautus, Control Theory for Linear Systems. Springer-Verlag, London (2001). | MR | Zbl
J.C. Willems, Least squares optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control AC-16 (1971) 621–634. | MR
K. Zhou, J.C. Doyle and K. Glover, Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ (1996). | Zbl
Cité par Sources :