In this paper, we solve an inverse problem arising in convex optimization. We consider a maximization problem under linear constraints. We characterize the solutions of this kind of problems. More precisely, we give necessary and sufficient conditions for a given function in to be the solution of a multi-constraint maximization problem. The conditions we give here extend well-known results in microeconomic theory.
Accepté le :
DOI : 10.1051/cocv/2015040
Mots clés : Inverse problem, multi-constraint maximization, value function, Slutsky relations
@article{COCV_2017__23_1_71_0, author = {Aloqeili, Marwan}, title = {The inverse problem in convex optimization with linear constraints}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {71--94}, publisher = {EDP-Sciences}, volume = {23}, number = {1}, year = {2017}, doi = {10.1051/cocv/2015040}, mrnumber = {3601016}, zbl = {1388.90095}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015040/} }
TY - JOUR AU - Aloqeili, Marwan TI - The inverse problem in convex optimization with linear constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 71 EP - 94 VL - 23 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015040/ DO - 10.1051/cocv/2015040 LA - en ID - COCV_2017__23_1_71_0 ER -
%0 Journal Article %A Aloqeili, Marwan %T The inverse problem in convex optimization with linear constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 71-94 %V 23 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015040/ %R 10.1051/cocv/2015040 %G en %F COCV_2017__23_1_71_0
Aloqeili, Marwan. The inverse problem in convex optimization with linear constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 71-94. doi : 10.1051/cocv/2015040. http://www.numdam.org/articles/10.1051/cocv/2015040/
M. Aloqeili, Utilisation du calcul différentiel exteriur en théorie du consommateur. Ph.D thesis, Université Paris Dauphine (2000).
Characterizing demand functions with price dependent income. Math. Fin. Econ. 8 (2014) 135–151. | DOI | MR | Zbl
,M. Aloqeili, The Generalized Slutsky Relations. J. Math. Econ. 40/1-2 (2004) 71-91. | MR | Zbl
R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differential Systems. In vol. 18. MSRI Publications. Springer-Verlag (1991). | MR | Zbl
The micro economics of group behavior: General characterization. J. Econ. Theory 130 1–26. | DOI | MR | Zbl
and ,P.A. Chiappori and I. Ekeland, The Economics and Mathematics of Aggregation: Formal Models of Efficient Group Behavior. Now Publishers Inc. Hanover (2010). | Zbl
P.A. Chiappori and I. Ekeland, Exterior differential calculus and aggregation theory: a presentation and some new results. CEREMADE, Université Paris-Dauphine.
An inverse problem in the economic theory of demand. Ann. Inst. Henri Poincaré, Non Lin. Anal. 23 (2016) 269–281. | DOI | Numdam | MR | Zbl
and ,A Convex Darboux Theorem. Methods Appl. Anal. 9 (2002) 329–344. | DOI | MR | Zbl
and ,Generalized duality and integrability. Econometrica 49 (1981) 655–678. | DOI | MR | Zbl
,Cité par Sources :