Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 842-861.

For a class of Bellman equations in bounded domains we prove that sub- and supersolutions whose growth at the boundary is suitably controlled must be constant. The ellipticity of the operator is assumed to degenerate at the boundary and a condition involving also the drift is further imposed. We apply this result to stochastic control problems, in particular to an exit problem and to the small discount limit related with ergodic control with state constraints. In this context, our condition on the behavior of the operator near the boundary ensures some invariance property of the domain for the associated controlled diffusion process.

Reçu le :
DOI : 10.1051/cocv/2015033
Classification : 35J60, 35J70, 93E20, 35B53
Mots-clés : Hamilton-Jacobi-Bellman equations, degenerate elliptic PDEs, stochastic control, exit-time problems, ergodic control with state constraints, viscosity solutions
Bardi, Martino 1 ; Cesaroni, Annalisa 1, 2 ; Rossi, Luca 1

1 Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy.
2 Italy
@article{COCV_2016__22_3_842_0,
     author = {Bardi, Martino and Cesaroni, Annalisa and Rossi, Luca},
     title = {Nonexistence of nonconstant solutions of some degenerate {Bellman} equations and applications to stochastic control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {842--861},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015033},
     mrnumber = {3527947},
     zbl = {1346.35067},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015033/}
}
TY  - JOUR
AU  - Bardi, Martino
AU  - Cesaroni, Annalisa
AU  - Rossi, Luca
TI  - Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 842
EP  - 861
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015033/
DO  - 10.1051/cocv/2015033
LA  - en
ID  - COCV_2016__22_3_842_0
ER  - 
%0 Journal Article
%A Bardi, Martino
%A Cesaroni, Annalisa
%A Rossi, Luca
%T Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 842-861
%V 22
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015033/
%R 10.1051/cocv/2015033
%G en
%F COCV_2016__22_3_842_0
Bardi, Martino; Cesaroni, Annalisa; Rossi, Luca. Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 842-861. doi : 10.1051/cocv/2015033. http://www.numdam.org/articles/10.1051/cocv/2015033/

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. Mem. Amer. Math. Soc. 204 (2010) 960. | MR | Zbl

A. Arapostathis, V.S. Borkar and M.K. Ghosh, Ergodic control of diffusion processes. Cambridge University Press, Cambridge (2012). | MR | Zbl

M. Arisawa and P.-L. Lions, On ergodic stochastic control. Commun. Partial Differ. Equ. 23 (1998) 2187–2217. | DOI | MR | Zbl

M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton−Jacobi−Bellman equations. Birkhäuser Boston, Boston, MA (1997). | MR | Zbl

M. Bardi and P. Goatin, Invariant sets for controlled degenerate diffusions: a viscosity solutions approach, in “Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming”, edited by W.M. McEneaney, G.G. Yin and Q. Zhang. Birkhäuser, Boston (1999) 191–208. | MR | Zbl

M. Bardi and F. Da Lio, Propagation of maxima and strong maximum principle for fully nonlinear degenerate elliptic equations. Part I: convex operators. Nonlinear Anal. 44 (2001) 991–1006. | DOI | MR | Zbl

M. Bardi and R. Jensen, A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Anal. 10 (2002) 129–141. | DOI | MR | Zbl

M. Bardi and F. Da Lio, Propagation of maxima and strong maximum principle for fully nonlinear degenerate elliptic equations. Part II: concave operators. Indiana Univ. Math. J. 52 (2003) 607–627. | DOI | MR | Zbl

G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106 (1993) 90–106. | DOI | MR | Zbl

G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Eq. 20 (1995) 129–178. | DOI | MR | Zbl

G. Barles and E. Rouy, A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications. Commun. Partial Differ. Equ. 23 (1998) 11–12, 1995–2033. | DOI | MR | Zbl

G. Barles and F. Da Lio, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005) 521–541. | DOI | Numdam | MR | Zbl

G. Barles, A. Porretta and T.T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 94 (2010) 497–519. | DOI | MR | Zbl

A. Bensoussan and J. Frehse, Ergodic control Bellman equation with Neumann boundary conditions. Vol. 280 of Lect. Notes Control Inform. Sci. Springer, Berlin (2002) 59–71. | MR | Zbl

H. Berestycki, I. Capuzzo Dolcetta, A. Porretta, L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators. J. Math. Pures Appl. 103 (2015) 1276–1293. | DOI | MR | Zbl

V. Borkar and A. Budhiraja, Ergodic control for constrained diffusions: characterization using HJB equations. SIAM J. Control Optim. 43 (2004/05) 1467–1492. | DOI | MR | Zbl

P. Cannarsa, G. Da Prato and H. Frankowska, Invariant measures associated to degenerate elliptic operators. Indiana Univ. Math. J. 59 (2010) 53–78. | DOI | MR | Zbl

I. Capuzzo Dolcetta, A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities. Commun. Contemp. Math. 5 (2003) 435–448. | DOI | MR | Zbl

A. Cesaroni, Lyapunov Stabilizability of Controlled Diffusions via a Superoptimality Principle for Viscosity Solutions. Appl. Math. Optim. 53 (2006) 1–29. | DOI | MR | Zbl

H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term. J. Differ. Eq. 255 (2013) 2167–2195. | DOI | MR | Zbl

M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. | DOI | MR | Zbl

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. 5 (1956) 1–30. | MR | Zbl

W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. 2nd edition. Springer, New York (2006). | MR

D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1988). | MR | Zbl

U.G. Haussmann and J.-P. Lepeltier, On the existence of optimal controls. SIAM J. Control Optim. 28 (1990) 851–902. | DOI | MR | Zbl

J.M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 283 (1989) 583–630. | DOI | MR | Zbl

T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary. Arch. Ration. Mech. Anal. 202 (2011) 663–705. | DOI | MR | Zbl

P.-L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Anal. Math. 45 (1985) 234–254. | DOI | MR | Zbl

P.-L. Lions and C. Villani, Régularité optimale de racines carrées. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1537–1541. | MR | Zbl

A. Porretta, The “ergodic limit” for a viscous Hamilton-Jacobi equation with Dirichlet conditions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010) 59–78. | DOI | MR | Zbl

M.V. Safonov, On the classical solution of Bellman’s elliptic equation. Sov. Math. Dokl. 30 (1984) 482–485. | Zbl

N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Partial differential equations and the calculus of variations. Vol. II of Progr. Nonlin. Differ. Equ. Appl. Birkhäuser Boston, Boston, MA (1989) 939–957. | MR | Zbl

Cité par Sources :