We investigate the role of the noncompact group of dilations in on the difference of the quadratic forms associated to the fractional Dirichlet and Navier Laplacians. Then we apply our results to study the Brezis–Nirenberg effect in two families of noncompact boundary value problems involving the Navier−Laplacian.
DOI : 10.1051/cocv/2015032
Mots-clés : Fractional Laplace operators, Navier and Dirichlet boundary conditions, Sobolev inequality, critical dimensions
@article{COCV_2016__22_3_832_0, author = {Musina, Roberta and Nazarov, Alexander I.}, title = {On fractional {Laplacians} {\textendash} 3}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {832--841}, publisher = {EDP-Sciences}, volume = {22}, number = {3}, year = {2016}, doi = {10.1051/cocv/2015032}, mrnumber = {3527946}, zbl = {1354.35179}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015032/} }
TY - JOUR AU - Musina, Roberta AU - Nazarov, Alexander I. TI - On fractional Laplacians – 3 JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 832 EP - 841 VL - 22 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015032/ DO - 10.1051/cocv/2015032 LA - en ID - COCV_2016__22_3_832_0 ER -
%0 Journal Article %A Musina, Roberta %A Nazarov, Alexander I. %T On fractional Laplacians – 3 %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 832-841 %V 22 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015032/ %R 10.1051/cocv/2015032 %G en %F COCV_2016__22_3_832_0
Musina, Roberta; Nazarov, Alexander I. On fractional Laplacians – 3. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 832-841. doi : 10.1051/cocv/2015032. http://www.numdam.org/articles/10.1051/cocv/2015032/
On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252 (2012) 6133–6162. | DOI | MR | Zbl
, , and ,M. Bonforte, Y. Sire and J.L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Preprint (2014). | arXiv | MR
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983) 437–477. | DOI | MR | Zbl
and ,Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (2014) 23–53. | DOI | Numdam | MR | Zbl
and ,An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl
and ,Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59 (2006) 330–343. | DOI | MR | Zbl
, and ,Perturbations of a critical fractional equation. Pacific J. Math. 271 (2014) 65–84. | DOI | MR | Zbl
, and ,Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295 (2004) 225–236. | DOI | MR | Zbl
and ,Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004) 2149–2168. | DOI | MR | Zbl
, and ,F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Vol. 1991 of Lect. Notes Math. Springer, Berlin (2010). | MR | Zbl
Sharp Sobolev inequalities in critical dimensions. Michigan Math. J. 51 (2003) 27–45. | MR | Zbl
,Spectral theory of the operator . Commun. Math. Phys. 53 (1977) 285–294. | MR | Zbl
,J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, translated from the French by P. Kenneth. Springer, New York (1972). | MR | Zbl
A simple approach to Hardy inequalities. Mat. Zametki 67 (2000) 563–572 (in Russian). English transl.: Math. Notes 67 (2000) 479–486. | MR | Zbl
,On fractional Laplacians. Commun. Partial Differ. Equ. 39 (2014) 1780–1790. | DOI | MR | Zbl
and ,Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoamer. 32 (2016) 257–266. | DOI | MR | Zbl
and ,R. Musina and A.I. Nazarov, On fractional Laplacians − 2. Preprint (2014). | arXiv | Numdam | MR
On the Sobolev and Hardy constants for the fractional Navier Laplacian. Nonlin. Anal. 121 (2015) 123–129. | DOI | MR | Zbl
and ,Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. (9) 69 (1990) 55–83. | MR | Zbl
and ,The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367 (2015) 67–102. | DOI | MR | Zbl
and ,A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12 (2013) 2445–2464. | DOI | MR | Zbl
and ,Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl
and ,The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42 (2011) 21–41. | DOI | MR | Zbl
,H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Deutscher Verlag Wissensch. Berlin (1978). | MR | Zbl
Best constant for the embedding of the space into . Differ. Integral Equ. 6 (1993) 259–276. | MR | Zbl
,On the theory of the discrete spectrum of the three-particle Schrödinger operator. Mat. Sbornik 94(136) (1974) 567–593 (Russian); English transl.: Math. USSR Sbornik 23 (1974) 535–559. | MR | Zbl
,D.R. Yafaev, Mathematical Scattering Theory: Analytic Theory, Vol. 158 of Math. Surv. Monogr. AMS (2010). | MR | Zbl
Cité par Sources :