On fractional Laplacians – 3
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 832-841.

We investigate the role of the noncompact group of dilations in R n on the difference of the quadratic forms associated to the fractional Dirichlet and Navier Laplacians. Then we apply our results to study the Brezis–Nirenberg effect in two families of noncompact boundary value problems involving the Navier−Laplacian.

Reçu le :
DOI : 10.1051/cocv/2015032
Classification : 47A63, 35A23
Mots-clés : Fractional Laplace operators, Navier and Dirichlet boundary conditions, Sobolev inequality, critical dimensions
Musina, Roberta 1 ; Nazarov, Alexander I. 2, 3

1 Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 – 33100 Udine, Italy
2 St.Petersburg Department of Steklov Institute, Fontanka 27, St.Petersburg, 191023, Russia.
3 St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia.
@article{COCV_2016__22_3_832_0,
     author = {Musina, Roberta and Nazarov, Alexander I.},
     title = {On fractional {Laplacians} {\textendash} 3},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {832--841},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015032},
     mrnumber = {3527946},
     zbl = {1354.35179},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015032/}
}
TY  - JOUR
AU  - Musina, Roberta
AU  - Nazarov, Alexander I.
TI  - On fractional Laplacians – 3
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 832
EP  - 841
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015032/
DO  - 10.1051/cocv/2015032
LA  - en
ID  - COCV_2016__22_3_832_0
ER  - 
%0 Journal Article
%A Musina, Roberta
%A Nazarov, Alexander I.
%T On fractional Laplacians – 3
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 832-841
%V 22
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015032/
%R 10.1051/cocv/2015032
%G en
%F COCV_2016__22_3_832_0
Musina, Roberta; Nazarov, Alexander I. On fractional Laplacians – 3. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 832-841. doi : 10.1051/cocv/2015032. http://www.numdam.org/articles/10.1051/cocv/2015032/

B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252 (2012) 6133–6162. | DOI | MR | Zbl

M. Bonforte, Y. Sire and J.L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Preprint (2014). | arXiv | MR

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983) 437–477. | DOI | MR | Zbl

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (2014) 23–53. | DOI | Numdam | MR | Zbl

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59 (2006) 330–343. | DOI | MR | Zbl

E. Colorado, A. De Pablo and U. Sánchez, Perturbations of a critical fractional equation. Pacific J. Math. 271 (2014) 65–84. | DOI | MR | Zbl

A. Cotsiolis and N.K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295 (2004) 225–236. | DOI | MR | Zbl

F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004) 2149–2168. | DOI | MR | Zbl

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Vol. 1991 of Lect. Notes Math. Springer, Berlin (2010). | MR | Zbl

Y. Ge, Sharp Sobolev inequalities in critical dimensions. Michigan Math. J. 51 (2003) 27–45. | MR | Zbl

I.W. Herbst, Spectral theory of the operator (p 2 +m 2 ) 1/2 -Ze 2 /r. Commun. Math. Phys. 53 (1977) 285–294. | MR | Zbl

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, translated from the French by P. Kenneth. Springer, New York (1972). | MR | Zbl

E. Mitidieri, A simple approach to Hardy inequalities. Mat. Zametki 67 (2000) 563–572 (in Russian). English transl.: Math. Notes 67 (2000) 479–486. | MR | Zbl

R. Musina and A.I. Nazarov, On fractional Laplacians. Commun. Partial Differ. Equ. 39 (2014) 1780–1790. | DOI | MR | Zbl

R. Musina and A.I. Nazarov, Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoamer. 32 (2016) 257–266. | DOI | MR | Zbl

R. Musina and A.I. Nazarov, On fractional Laplacians − 2. Preprint (2014). | arXiv | Numdam | MR

R. Musina and A.I. Nazarov, On the Sobolev and Hardy constants for the fractional Navier Laplacian. Nonlin. Anal. 121 (2015) 123–129. | DOI | MR | Zbl

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. (9) 69 (1990) 55–83. | MR | Zbl

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367 (2015) 67–102. | DOI | MR | Zbl

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12 (2013) 2445–2464. | DOI | MR | Zbl

P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42 (2011) 21–41. | DOI | MR | Zbl

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Deutscher Verlag Wissensch. Berlin (1978). | MR | Zbl

R.C.A.M. Van Der Vorst, Best constant for the embedding of the space H 2 H 0 1 (Ω) into L 2N/(N-4) (Ω). Differ. Integral Equ. 6 (1993) 259–276. | MR | Zbl

D.R. Yafaev, On the theory of the discrete spectrum of the three-particle Schrödinger operator. Mat. Sbornik 94(136) (1974) 567–593 (Russian); English transl.: Math. USSR Sbornik 23 (1974) 535–559. | MR | Zbl

D.R. Yafaev, Mathematical Scattering Theory: Analytic Theory, Vol. 158 of Math. Surv. Monogr. AMS (2010). | MR | Zbl

Cité par Sources :