An optimal irrigation network with infinitely many branching points
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 543-561.

The Gilbert−Steiner problem is a mass transportation problem, where the cost of the transportation depends on the network used to move the mass and it is proportional to a certain power of the “flow”. In this paper, we introduce a new formulation of the problem, which turns it into the minimization of a convex functional in a class of currents with coefficients in a group. This framework allows us to define calibrations. We apply this technique to prove the optimality of a certain irrigation network in the separable Hilbert space 2 , having countably many branching points and a continuous amount of endpoints.

Reçu le :
DOI : 10.1051/cocv/2015028
Classification : 49Q15, 49Q20, 49N60, 53C38
Mots clés : Gilbert−Steiner problem, irrigation problem, calibrations, flatG-chains
Marchese, Andrea 1 ; Massaccesi, Annalisa 2

1 Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, 04103 Leipzig, Germany
2 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
@article{COCV_2016__22_2_543_0,
     author = {Marchese, Andrea and Massaccesi, Annalisa},
     title = {An optimal irrigation network with infinitely many branching points},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {543--561},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015028},
     zbl = {1343.49074},
     mrnumber = {3491783},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015028/}
}
TY  - JOUR
AU  - Marchese, Andrea
AU  - Massaccesi, Annalisa
TI  - An optimal irrigation network with infinitely many branching points
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 543
EP  - 561
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015028/
DO  - 10.1051/cocv/2015028
LA  - en
ID  - COCV_2016__22_2_543_0
ER  - 
%0 Journal Article
%A Marchese, Andrea
%A Massaccesi, Annalisa
%T An optimal irrigation network with infinitely many branching points
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 543-561
%V 22
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015028/
%R 10.1051/cocv/2015028
%G en
%F COCV_2016__22_2_543_0
Marchese, Andrea; Massaccesi, Annalisa. An optimal irrigation network with infinitely many branching points. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 543-561. doi : 10.1051/cocv/2015028. http://www.numdam.org/articles/10.1051/cocv/2015028/

L. Ambrosio and B. Kirchheim, Currents in metric spaces. Acta Math. 185 (2000) 1–80. | DOI | MR | Zbl

M. Bernot, V. Caselles and J.-M. Morel, Traffic plans. Publ. Mat. 49 (2005) 417–451. | DOI | MR | Zbl

M. Bernot, V. Caselles and J.M. Morel, Are there infinite irrigation trees? J. Math. Fluid Mech. 8 (2006) 311–332. | DOI | MR | Zbl

M. Bernot, V. Caselles and J.-M. Morel,Optimal Transportation Networks, Models and theory. In vol. 1955 of Lect. Notes Math. Springer-Verlag, Berlin (2009). | MR | Zbl

F. Bethuel, A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces. Preprint (2014). | arXiv | MR

S. Bhaskaran and F.J.M. Salzborn, Optimal design of gas pipeline networks. J. Oper. Res. Soc. 30 (1979) 1047–1060. | DOI | Zbl

A. Brancolini and G. Buttazzo, Optimal networks for mass transportation problems. ESAIM: COCV 11 (2005) 88–101. | Numdam | MR | Zbl

A. Brancolini, G. Buttazzo and F. Santambrogio, Path functionals over Wasserstein spaces. J. Eur. Math. Soc. 8 (2006) 415–434. | DOI | MR | Zbl

L. Brasco and F. Santambrogio, An equivalent path functional formulation of branched transportation problems. Discrete Contin. Dyn. Syst. 29 (2011) 845–871. | DOI | MR | Zbl

H. Brezis, J.-M. Coron and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. | DOI | MR | Zbl

S. Conti, A. Garroni and A. Massaccesi, Lower semicontinuity and relaxation of functionals on one-dimensional currents with multiplicity in a lattice. Preprint (2013).

T. De Pauw and R. Hardt, Rectifiable and flat G chains in a metric space. Amer. J. Math. 134 (2012) 1–69. | DOI | MR | Zbl

A.K. Deb, Least cost design of branched pipe network system. J. Environ. Eng. Division 100 (1974) 821–835. | DOI

H. Federer, Geometric measure theory. Die Grundl. Math. Wiss., Band 153. Springer-Verlag, New York Inc. (1969). | MR | Zbl

E.N. Gilbert, Minimum cost communication networks. Bell Syst. Tech. J. 46 (1967) 2209–2227. | DOI

S.G. Krantz and H.R. Parks, Geometric Integration Theory. Cornerstones. Birkhäuser Boston Inc., Boston, MA (2008). | MR | Zbl

F. Maddalena and S. Solimini, Transport distances and irrigation models. J. Convex Anal. 16 (2009) 121–152. | MR | Zbl

F. Maddalena and S. Solimini, Synchronic and asynchronic descriptions of irrigation problems. Adv. Nonlin. Stud. 13 (2013) 583–623. | DOI | MR | Zbl

F. Maddalena, S. Solimini and J.-M. Morel, A variational model of irrigation patterns. Interfaces Free Bound. 5 (2003) 391–415. | DOI | MR | Zbl

A. Marchese and A. Massaccesi, The Steiner tree problem revisited through rectifiable G-currents. Adv. Calc. Var. 9 (2016) 19–39. | MR | Zbl

B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval, An optimal bronchial tree may be dangerous. Nature. 427 (2004) 633–636. | DOI

J.-M. Morel and F. Santambrogio, The regularity of optimal irrigation patterns. Arch. Ration. Mech. Anal. 195 (2010) 499–531. | DOI | MR | Zbl

E. Paolini and E. Stepanov, Optimal transportation networks as flat chains. Interfaces Free Bound. 8 (2006) 393–436. | DOI | MR | Zbl

E. Paolini and E. Stepanov, Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860. | DOI | MR | Zbl

E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an infinite Steiner tree connecting an uncountable set. Adv. Calc. Var. 8 (2015) 267–290. | DOI | MR | Zbl

E. Paolini and L. Ulivi, The Steiner problem for infinitely many points. Rend. Semin. Mat. Univ. Padova 124 (2010) 43–56. | DOI | Numdam | MR | Zbl

L. Simon, Lectures on Geometric Measure Theory. In vol. 3 of Proc. of the Centre for Mathematical Analysis. Australian National University Centre for Mathematical Analysis, Canberra (1983). | MR | Zbl

E.O. Stepanov, Optimization model of transport currents. Problems in mathematical analysis. J. Math. Sci. (N. Y.) 135 (2006) 3457–3484. | DOI | MR | Zbl

G.B. West, J.H. Brown and B.J. Enquist, A general model for the origin of allometric scaling laws in biology. Science 276 (1997) 122–126. | DOI

B. White, Rectifiability of flat chains. Ann. Math.150 (1999) 165–184. | DOI | MR | Zbl

Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. | DOI | MR | Zbl

Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20 (2004) 283–299. | DOI | MR | Zbl

Q. Xia, The formation of a tree leaf. ESAIM: COCV 13 (2007) 359–377. | Numdam | MR | Zbl

W.I. Zangwill, Minimum concave cost flows in certain networks. Manag. Sci. 14 (1968) 429–450. | DOI | MR | Zbl

Cité par Sources :