Linear quadratic stochastic two-person zero-sum differential games in an infinite horizon
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 743-769.

This paper is concerned with a linear quadratic stochastic two-person zero-sum differential game with constant coefficients in an infinite time horizon. Open-loop and closed-loop saddle points are introduced. The existence of closed-loop saddle points is characterized by the solvability of an algebraic Riccati equation with a certain stabilizing condition. A crucial result makes our approach work is the unique solvability of a class of linear backward stochastic differential equations in an infinite horizon.

Reçu le :
DOI : 10.1051/cocv/2015024
Classification : 93E20, 91A23, 49N10, 49N70
Mots-clés : Linear quadratic stochastic differential game, two-person, zero-sum, infinite horizon, open-loop and closed-loop saddle points, algebraic Riccati equation, stabilizing solution
Sun, Jingrui 1 ; Yong, Jiongmin 2 ; Zhang, Shuguang 3

1 School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. of China.
2 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA.
3 Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
@article{COCV_2016__22_3_743_0,
     author = {Sun, Jingrui and Yong, Jiongmin and Zhang, Shuguang},
     title = {Linear quadratic stochastic two-person zero-sum differential games in an infinite horizon},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {743--769},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015024},
     zbl = {1342.93122},
     mrnumber = {3527942},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015024/}
}
TY  - JOUR
AU  - Sun, Jingrui
AU  - Yong, Jiongmin
AU  - Zhang, Shuguang
TI  - Linear quadratic stochastic two-person zero-sum differential games in an infinite horizon
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 743
EP  - 769
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015024/
DO  - 10.1051/cocv/2015024
LA  - en
ID  - COCV_2016__22_3_743_0
ER  - 
%0 Journal Article
%A Sun, Jingrui
%A Yong, Jiongmin
%A Zhang, Shuguang
%T Linear quadratic stochastic two-person zero-sum differential games in an infinite horizon
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 743-769
%V 22
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015024/
%R 10.1051/cocv/2015024
%G en
%F COCV_2016__22_3_743_0
Sun, Jingrui; Yong, Jiongmin; Zhang, Shuguang. Linear quadratic stochastic two-person zero-sum differential games in an infinite horizon. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 743-769. doi : 10.1051/cocv/2015024. http://www.numdam.org/articles/10.1051/cocv/2015024/

M. Ait Rami, X.Y. Zhou and J.B. Moore, Well-posedness and attainability of indefnite stochastic linear quadratic control in infnite time horizon. Syst. Control Lett. 41 (2000) 123–133. | DOI | MR | Zbl

A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudo-inverses. SIAM J. Appl. Math. 17 (1969) 434–440. | DOI | MR | Zbl

T. Basar and P. Bernhard, H -Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, Birkhäuser, Boston (1991) (2nd edn., 1995). | MR | Zbl

L.D. Berkovitz, Lectures on differential games, Differential Games and Related Topics, edited by H.W. Kuhn and G.P. Szego. North-Holland, Amsterdam, The Netherlands (1971) 3–45. | MR | Zbl

P. Bernhard, Linear-quadratic, two-person, zero-sum differential games: Necessary and sufficient conditions. J. Optim. Theory Appl. 27 (1979) 51–69. | DOI | MR | Zbl

M.C. Delfour, Linear quadratic differential games: saddle point and Riccati differential equations. SIAM J. Control Optim. 46 (2007) 750–774. | DOI | MR | Zbl

M.C. Delfour and O.D. Sbarba, Linear quadratic differential games: closed loop saddle points. SIAM J. Control Optim. 47 (2009) 3138–3166. | DOI | MR | Zbl

Y.C. Ho, A.E. Bryson and S. Baron, Differential games and optimal pursuit-evasion strategies. IEEE Trans. Automat. Control 10 (1965) 385–389. | DOI | MR

J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Appl. Math. Optim. 70 (2014) 29–59. | DOI | Zbl

A. Ichikawa, Linear quadratic differential games in a Hilbert space. SIAM J. Control Optim. 14 (1976) 120–136. | DOI | MR | Zbl

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition. Springer-Verlag, New York (1991). | MR | Zbl

L. Mou, J. Yong, Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. J. Ind. Manag. Optim. 2 (2006) 95–117. | DOI | MR | Zbl

S. Peng and Y. Shi, Infinite horizon forward-backward stochastic differential equations. Stochastic Process. Appl. 85 (2000) 75–92. | DOI | MR | Zbl

R. Penrose, A generalized inverse of matrices. Proc. Cambridge Philos. Soc. 52 (1955) 17–19. | MR

W. E. Schmitendorf, Existence of optimal open-loop strategies for a class of differential games. J. Optim. Theory Appl. 5 (1970) 363–375. | DOI | MR | Zbl

J. Sun and J. Yong, Linear Quadratic Stochastic Differential Games: Open-Loop and Closed-Loop Saddle Points. SIAM J. Control Optim. 52 (2014) 4082–4121. | DOI | MR | Zbl

H. Wu and X.Y. Zhou, Stochastic frequency characteristic. SIAM J. Control Optim. 40 (2001) 557–576. | DOI | MR | Zbl

J. Yong, Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equations. SIAM J. Control Optim. 51 (2013) 2809–2838. | DOI | MR | Zbl

J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). | MR | Zbl

P. Zhang, Some Results on Two-Person Zero-Sum linear Quadratic Differential Games. SIAM J. Control Optim. 43 (2005) 2157–2165. | DOI | MR | Zbl

Cité par Sources :