We consider stochastic control systems affected by a fast mean reverting volatility driven by a pure jump Lévy process. Motivated by a large literature on financial models, we assume that evolves at a faster time scale than the assets, and we study the asymptotics as . This is a singular perturbation problem that we study mostly by PDE methods within the theory of viscosity solutions.
DOI : 10.1051/cocv/2015015
Mots clés : Singular perturbations, stochastic volatility, jump processes, viscosity solutions, Hamilton–Jacobi–Bellman equations, portfolio optimization
@article{COCV_2016__22_2_500_0, author = {Bardi, Martino and Cesaroni, Annalisa and Scotti, Andrea}, title = {Convergence in multiscale financial models with {non-Gaussian} stochastic volatility}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {500--518}, publisher = {EDP-Sciences}, volume = {22}, number = {2}, year = {2016}, doi = {10.1051/cocv/2015015}, zbl = {1369.93713}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015015/} }
TY - JOUR AU - Bardi, Martino AU - Cesaroni, Annalisa AU - Scotti, Andrea TI - Convergence in multiscale financial models with non-Gaussian stochastic volatility JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 500 EP - 518 VL - 22 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015015/ DO - 10.1051/cocv/2015015 LA - en ID - COCV_2016__22_2_500_0 ER -
%0 Journal Article %A Bardi, Martino %A Cesaroni, Annalisa %A Scotti, Andrea %T Convergence in multiscale financial models with non-Gaussian stochastic volatility %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 500-518 %V 22 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015015/ %R 10.1051/cocv/2015015 %G en %F COCV_2016__22_2_500_0
Bardi, Martino; Cesaroni, Annalisa; Scotti, Andrea. Convergence in multiscale financial models with non-Gaussian stochastic volatility. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 500-518. doi : 10.1051/cocv/2015015. http://www.numdam.org/articles/10.1051/cocv/2015015/
Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2001/02) 1159–1188. | DOI | MR | Zbl
and ,Singular perturbations of degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61. | DOI | MR | Zbl
and ,M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). | MR | Zbl
Optimal control with random parameters: a multiscale approach. Eur. J. Control. 17 (2011), 30–46. | DOI | MR | Zbl
and ,M. Bardi and G. Terrone, Homogenization of some optimal control problems (to appear).
Convergence by Viscosity Methods in Multiscale Financial Models with Stochastic Volatility. SIAM J. Financial Math. 1 (2010) 230–265. | DOI | MR | Zbl
, and ,Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25 (2008) 567–585. | DOI | Numdam | MR | Zbl
, ,Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. Royal Stat. Soc. B 63 (2001) 167–241. | DOI | MR | Zbl
and ,Merton’s portfolio optimization problem in a Black-Scholes market with non-Gaussian stochastic volatility of Ornstein–Uhlenbeck Type. Math. Finance 13 (2003) 215–244. | DOI | MR | Zbl
, and ,On the strong maximum principle for second order nonlinear parabolic integro-differential equations. Adv. Differ. Equ. 17 (2012) 635–671. | MR | Zbl
,R. Cont and P. Tankov, Financial Modelling with Jump Processes. Chapman Hall/CRC, Boca Raton, Florida (2004). | MR | Zbl
Uniqueness results for second-order Bellman–Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45 (2006) 74–106. | DOI | MR | Zbl
and ,The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359–375. | DOI | MR | Zbl
,J.-P. Fouque, G. Papanicolau and R. Sircar, Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge, UK (2000). | MR | Zbl
Singular perturbations in option pricing. SIAM J. Appl. Math. 63 (2003a) 1648–1665. | DOI | MR | Zbl
, , and ,Multiscale stochastic volatility asymptotics. Multiscale Model. Simul. 2 (2003b) 22–42. | DOI | MR | Zbl
, , and ,J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives. Cambridge University Press, Cambridge (2011). | MR | Zbl
W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition. Springer-Verlag, New York (2006). | MR | Zbl
R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition. Springer, Heidelberg (2012). | MR | Zbl
On the explicit valuation of geometric asian options in stochastic volatility models with jumps. J. Comput. Appl. Math. 235 (2011) 3355–3365. | DOI | MR | Zbl
and ,On the Esscher transforms and other equivalent martingale measures for Barndorff–Nielsen and Shephard stochastic volatility models with jumps. Stoch. Process. Appl. 119 (2009) 2137–2157. | DOI | MR | Zbl
and ,Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Process. Appl. 119 (2009) 602–632. | DOI | MR | Zbl
,Exponential Lévy-type models with stochastic volatility and jump intensity. Quant. Finance 15 (2015) 91–100. | DOI | MR | Zbl
and ,Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math. Finance 13 (2003) 445–466. | DOI | MR | Zbl
and ,Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Systems Estim. Control 8 (1998) 1–27. | MR | Zbl
,On the existence of smooth densities for jump processes. Probab. Theory Related Fields 105 (1996) 481–511. | DOI | MR | Zbl
,Densities for Ornstein–Uhlenbeck processes with jumps. Bull. Lond. Math. Soc. 41 (2009) 41–50. | DOI | MR | Zbl
and ,K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). | MR | Zbl
Equations d’Hamilton–Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité. II. Existence de solutions de viscosité. Commun. Partial Differ. Equ. 16 (1991) 1057–1093. | DOI | Zbl
,B. Simon, Functional Integration and Quantum Physics. Academic Press, New York (1979). | MR | Zbl
H.M. Soner, Optimal Control of Jump-Markov Processes and Viscosity Solutions, in Stochastic Differential Systems. Vol. 10 of Stochastic Control Theory and Applications. IMA Math. Appl. Springer, New York (1988) 501–511. | MR | Zbl
Cité par Sources :