Optimal control problems in measure spaces governed by parabolic equations with are considered. The controls appear as spatial measure in the initial condition and as space-time measures as forcing functions. First order optimality conditions are derived and certain structural properties, in particular sparsity, are discussed. An framework for approximation if these highly irregular problems is also proposed.
DOI : 10.1051/cocv/2015008
Mots clés : Space-time measure controls, optimal control, sparsity, parabolic equations, first order optimality conditions, numerical approximation
@article{COCV_2016__22_2_355_0, author = {Casas, Eduardo and Kunisch, Karl}, title = {Parabolic control problems in space-time measure spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {355--370}, publisher = {EDP-Sciences}, volume = {22}, number = {2}, year = {2016}, doi = {10.1051/cocv/2015008}, mrnumber = {3491774}, zbl = {1343.49036}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015008/} }
TY - JOUR AU - Casas, Eduardo AU - Kunisch, Karl TI - Parabolic control problems in space-time measure spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 355 EP - 370 VL - 22 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015008/ DO - 10.1051/cocv/2015008 LA - en ID - COCV_2016__22_2_355_0 ER -
%0 Journal Article %A Casas, Eduardo %A Kunisch, Karl %T Parabolic control problems in space-time measure spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 355-370 %V 22 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015008/ %R 10.1051/cocv/2015008 %G en %F COCV_2016__22_2_355_0
Casas, Eduardo; Kunisch, Karl. Parabolic control problems in space-time measure spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 355-370. doi : 10.1051/cocv/2015008. http://www.numdam.org/articles/10.1051/cocv/2015008/
Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. | DOI | MR | Zbl
and ,Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl
,Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2013) 339–364. | DOI | MR | Zbl
and ,Spike controls for elliptic and parabolic pde. Systems Control Lett. 62 (2013) 311–318. | DOI | MR | Zbl
and ,Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. | DOI | MR | Zbl
, and ,Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | DOI | MR | Zbl
, and ,P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis: II. Handbook of Numerical Analysis. North-Holland (1990). | MR | Zbl
A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. | Numdam | MR | Zbl
and ,On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Annali della Scuola Normale Superiore di Pisa − Classe di Scienze13 (1986) 487–535. | Numdam | MR | Zbl
,L.C. Evans, Partial Differential Equations. Grad. Stud. Math. American Mathematical Society (2010). | MR
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Classics Appl. Math. Society for Industrial and Applied Mathematics (1985). | MR | Zbl
Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | DOI | MR | Zbl
and and ,Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | DOI | MR | Zbl
, and ,O.A. Ladyzhenskaia, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Translations of Mathematical Monographs. American Mathematical Society (1968). | MR | Zbl
Heat source identification based on constrained minimization. Inverse Probl. Imaging 8 (2014) 199–221. | DOI | MR | Zbl
, and ,A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. | DOI | MR | Zbl
and ,Hamiltonian pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143–177. | DOI | MR | Zbl
and ,Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. Part I. Global Estimates. Math. Comput. 67 (1998) 877–899. | DOI | MR | Zbl
,Compact sets in the space . Ann. Mat. Pura Appl. 146 (1986) 65–96. | DOI | MR | Zbl
,V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Ser. Comput. Math. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006). | MR
Compactness properties of the dg and cg time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680–4710. | DOI | MR | Zbl
,Cité par Sources :