Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 309-337.

We apply a phase field approach for a general shape optimization problem of a stationary Navier-Stokes flow. To be precise we add a multiple of the Ginzburg–Landau energy as a regularization to the objective functional and relax the non-permeability of the medium outside the fluid region. The resulting diffuse interface problem can be shown to be well-posed and optimality conditions are derived. We state suitable assumptions on the problem in order to derive a sharp interface limit for the minimizers and the optimality conditions. Additionally, we can derive a necessary optimality system for the sharp interface problem by geometric variations without stating additional regularity assumptions on the minimizing set.

Reçu le :
DOI : 10.1051/cocv/2015006
Classification : 35R35, 49Q10, 49Q12, 49Q20, 76D05
Mots-clés : Shape and topology optimization, phase field method, diffuse interfaces, stationary Navier-Stokes flow, fictitious domain
Garcke, Harald 1 ; Hecht, Claudia 1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@article{COCV_2016__22_2_309_0,
     author = {Garcke, Harald and Hecht, Claudia},
     title = {Applying a phase field approach for shape optimization of a stationary {Navier-Stokes} flow},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {309--337},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015006},
     mrnumber = {3491772},
     zbl = {1342.35218},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015006/}
}
TY  - JOUR
AU  - Garcke, Harald
AU  - Hecht, Claudia
TI  - Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 309
EP  - 337
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015006/
DO  - 10.1051/cocv/2015006
LA  - en
ID  - COCV_2016__22_2_309_0
ER  - 
%0 Journal Article
%A Garcke, Harald
%A Hecht, Claudia
%T Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 309-337
%V 22
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015006/
%R 10.1051/cocv/2015006
%G en
%F COCV_2016__22_2_309_0
Garcke, Harald; Hecht, Claudia. Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 309-337. doi : 10.1051/cocv/2015006. http://www.numdam.org/articles/10.1051/cocv/2015006/

L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1 (1993) 55–69. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Oxford, Press (2000). | MR | Zbl

J. Bello, E. Fernández-Cara, J. Lemoine and J. Simon, The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier–Stokes flow. SIAM J. Control Optim. 35 (1997) 626–640. | DOI | MR | Zbl

J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis. Eur. J. Appl. Math. 2 (1991) 233–280. | DOI | MR | Zbl

T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow. Internat. J. Numer. Methods Fluids 41 (2003) 77–107. | DOI | MR | Zbl

B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. | Numdam | MR | Zbl

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems. Progr. Nonlin. Differ. Equ. Appl. Springer (2006). | MR | Zbl

G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17–49. | DOI | MR | Zbl

G. Dal Maso, An Introduction to Γ-convergence. Progr. Nonlin. Differ. Equ. Appl. Birkhäuser (1993). | MR | Zbl

G. Dal Masos and U. Mosco, Wiener’s criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15–63. | DOI | MR | Zbl

M.C. Delfour and J.P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization. Adv. Des. Control. SIAM (2001). | MR | Zbl

M.C. Delfour and J.P. Zolésio, Shape Derivatives for Nonsmooth Domains. Optimal Control of Partial Differential Equations, edited by K.-H. Hoffmann and W. Krabs. In vol. 149 of Lect. Notes Control and Inform. Sci. Springer (1991) 38–55. | MR | Zbl

L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Mathematical Chemistry Series. CRC PressINC (1992). | MR

G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer (2011). | MR | Zbl

H. Garcke and C. Hecht, A phase field approach for shape and topology optimization in Stokes flow. New Trends in Shape Optimization. Edited by Pratelli, Aldo, Leugering, Günter. ISNM Series, vol. 166. Birkhäuser, Basel (2014). | MR

H. Garcke and C. Hecht, Shape and topology optimization in Stokes flow with a phase field approach. Appl. Math. Optim. 73 (2016) 23–70. | DOI | MR | Zbl

H. Garcke, C. Hecht, M. Hinze and C. Kahle, Numerical approximation of phase field based shape and topology optimization for fluids. Preprint (2014). | arXiv | MR

C. Hecht, Shape and topology optimization in fluids using a phase field approach and an application in structural optimization. Dissertation, University of Regensburg (2014).

B. Kawohl, A. Cellina and A. Ornelas, Optimal Shape Design: Lectures Given at the Joint C.I.M./C.I.M.E. Summer School Held in Troia (Portugal), June 1-6 (1998). In Lect. Notes Math./C.I.M.E. Foundation Subseries. Springer (2000). | MR | Zbl

L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. | DOI | MR | Zbl

S. Schmidt and V. Schulz, Shape Derivatives for General Objective Functions and the Incompressible Navier–Stokes Equations. Control Cybernet. 39 (2010) 677–713. | MR | Zbl

R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. In vol. 49 of Math. Surv. Monographs. American Mathematical Society (1997). | MR | Zbl

J. Simon, Domain variation for drag in Stokes flow. Control Theory of Distributed Parameter Systems and Applications, edited by X. Li and J. Yong. In vol. 159 of Lect. Notes Control and Inform. Sci. Springer (1991) 28–42. | MR | Zbl

H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser (2001). | MR | Zbl

J. Sokolowski and J.P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer (1992). | MR | Zbl

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101 (1988) 209–260. | DOI | MR | Zbl

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Stud. Math. Appl. North-Holland (1977). | MR | Zbl

F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Vieweg (2009).

E. Zeidler, Nonlinear Functional Analysis and Its Applications: Part 2B: Nonlinear Monotone Operators. Springer (1990). | Zbl

E. Zeidler, Nonlinear Functional Analysis and Its Applications: Part IV: Applications to Mathematical Physics. Springer (1997). | MR | Zbl

Cité par Sources :