On singular elliptic equations with measure sources
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 289-308.

We prove existence of solutions for a class of singular elliptic problems with a general measure as source term whose model is

-Δu=f(x) u γ +μinΩ,u=0onΩ,u>0onΩ,
where Ω is an open bounded subset of N . Here γ>0, f is a nonnegative function on Ω, and μ is a nonnegative bounded Radon measure on Ω.

Reçu le :
DOI : 10.1051/cocv/2015004
Classification : 35J60, 35J61, 35J75, 35R06
Mots-clés : Nonlinear elliptic equations, singular elliptic equations, measure data
Oliva, Francescantonio 1 ; Petitta, Francesco 1

1 Dipartimento di Scienze di Base e Applicate per l’ Ingegneria, “Sapienza”, Università di Roma, Via Scarpa 16, 00161 Roma, Italy
@article{COCV_2016__22_1_289_0,
     author = {Oliva, Francescantonio and Petitta, Francesco},
     title = {On singular elliptic equations with measure sources},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {289--308},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2015004},
     zbl = {1337.35060},
     mrnumber = {3489386},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015004/}
}
TY  - JOUR
AU  - Oliva, Francescantonio
AU  - Petitta, Francesco
TI  - On singular elliptic equations with measure sources
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 289
EP  - 308
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015004/
DO  - 10.1051/cocv/2015004
LA  - en
ID  - COCV_2016__22_1_289_0
ER  - 
%0 Journal Article
%A Oliva, Francescantonio
%A Petitta, Francesco
%T On singular elliptic equations with measure sources
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 289-308
%V 22
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015004/
%R 10.1051/cocv/2015004
%G en
%F COCV_2016__22_1_289_0
Oliva, Francescantonio; Petitta, Francesco. On singular elliptic equations with measure sources. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 289-308. doi : 10.1051/cocv/2015004. http://www.numdam.org/articles/10.1051/cocv/2015004/

D. Arcoya, J. Carmona, T. Leonori, P.J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. 246 (2009) 4006–4042. | DOI | MR | Zbl

D. Arcoya and L. Moreno-Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Analysis 95 (2014) 281–291. | DOI | MR | Zbl

D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Bifurcation for quasilinear elliptic singular BVP. Commun. Partial Differ. Equ. 36 (2011) 670–692. | DOI | MR | Zbl

P. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L 1 theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22 (1995) 240–273. | Numdam | MR | Zbl

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM: COCV 14 (2008) 411–426. | Numdam | MR | Zbl

L. Boccardo and J. Casado-Díaz, Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptotic Analysis 86 (2014) 1–15. | DOI | MR | Zbl

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. | DOI | MR | Zbl

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Analysis 19 (1992) 581–597. | DOI | MR | Zbl

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37 (2010) 363–380. | DOI | MR | Zbl

L. Boccardo, F. Murat and J.P. Puel, Existence of bounded solutions for nonlinear unilateral problems. Ann. Mat. Pura Appl. 152 (1988) 183–196. | DOI | MR | Zbl

H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions. Bollettino dell’Unione Matematica Italiana Serie 8 (1998) 223–262. | MR | Zbl

H. Brezis, M. Marcus and A.C. Ponce, Nonlinear elliptic equations with measures revisited. Vol. 163 of Ann. Math. Stud. Princeton University Press NJ (2007) 55–110. | MR | Zbl

A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem. J. Differ. Equ. 221 (2006) 210–223. | DOI | MR | Zbl

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations. J. Convex Analysis 11 (2004) 147–162. | MR | Zbl

A. Canino, M. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities. J. Differ. Equ. 255 (2013) 4437–4447. | DOI | MR | Zbl

G.M. Coclite and M.M. Coclite, On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete Contin. Dyn. Syst. 33 (2013) 4923–4944. | DOI | MR | Zbl

M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a dirichlet problem with a singular nonlinearity. Commun. Partial. Differ. Equ. 2 (1977) 193–222. | DOI | MR | Zbl

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Annali della Scuola Normale Superiore di Pisa 28 (1999) 741–808. | Numdam | MR | Zbl

L.M. De Cave, Nonlinear elliptic equations with singular nonlinearities. Asymptotic Anal. 84 (2013) 181–195. | DOI | MR | Zbl

D. Giachetti, P. J. Martínez-Aparicio and F. Murat, Elliptic equations with mild singularities: existence and homogenization. Preprint (2015). | arXiv | MR

D. Giachetti, P. J. Martínez-Aparicio and F. Murat, Homogenization of singular semilinear elliptic equations in domains with small holes (preprint).

D. Giachetti, F. Petitta, S. Segura de Leon, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum. Differ. Int. Equ. 26 (2013) 913–948. | MR | Zbl

A.C. Lazer and P.J. Mckenna, On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111 (1991) 721–730. | DOI | MR | Zbl

J. Leray and J.L. Lions, Quelques résultats de Višik sur les problémes elliptiques semilinéaires par les méthodes de Minty et Browder. Bull. Soc. Math. France 93 (1965) 97–107. | DOI | Numdam | MR | Zbl

M. Montenegro and A.C. Ponce, The sub-supersolution method for weak solutions. Proc. Amer. Math. Soc. 136 (2008) 2429–2438. | DOI | MR | Zbl

A. C. Ponce, Selected problems on elliptic equations involving measures. Preprint (2014). | arXiv

J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 385–387. | Numdam | MR | Zbl

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. | DOI | Numdam | MR | Zbl

Y. Sun and D. Zhang, The role of the power 3 for elliptic equations with negative exponents. Calc. Var. Partial Differ. Equ. 49 (2014) 909–922. | DOI | MR | Zbl

Cité par Sources :