A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by using our approach to give simple proofs of properties of the gradient flow, including the contracting semigroup property and energy dissipation inequality.
DOI : 10.1051/cocv/2014069
Mots-clés : Wasserstein metric, gradient flow, exponential formula
@article{COCV_2016__22_1_169_0, author = {Craig, Katy}, title = {The exponential formula for the wasserstein metric}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {169--187}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2014069}, zbl = {1338.47071}, mrnumber = {3489381}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014069/} }
TY - JOUR AU - Craig, Katy TI - The exponential formula for the wasserstein metric JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 169 EP - 187 VL - 22 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014069/ DO - 10.1051/cocv/2014069 LA - en ID - COCV_2016__22_1_169_0 ER -
%0 Journal Article %A Craig, Katy %T The exponential formula for the wasserstein metric %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 169-187 %V 22 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014069/ %R 10.1051/cocv/2014069 %G en %F COCV_2016__22_1_169_0
Craig, Katy. The exponential formula for the wasserstein metric. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 169-187. doi : 10.1051/cocv/2014069. http://www.numdam.org/articles/10.1051/cocv/2014069/
L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math. ETH Zürich 2nd edition. Birkhäuser Verlag, Basel (2008). | MR | Zbl
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973). | MR | Zbl
Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Functional Analysis 9 (1972) 63–74. | DOI | MR | Zbl
and ,Contraction of the proximal map and generalized convexity of the Moreau−Yosida regularization in the 2-Wasserstein metric. Math. Mech. Complex Systems 1 (2013) 33–65. | DOI | Zbl
and ,Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. | DOI | MR | Zbl
, , , , and ,Confinement in nonlocal interaction equations. Nonlin. Anal. 75 (2012) 550–558. | DOI | MR | Zbl
, , , and ,A Crandall-Liggett approach to gradient flows in metric spaces. J. Abstr. Differ. Equ. Appl. 1 (2010) 46–60. | MR | Zbl
and ,M.G. Crandall, Semigroups of nonlinear transformations in Banach spaces. In Contributions to nonlinear functional analysis Proc. of Sympos., Math. Res. Center, Univ. Wisconsin, Madison. Publ. Math. Res. Center Univ. Wisconsin, No. 27. Academic Press, New York (1971) 157–179. | MR | Zbl
Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–298. | DOI | MR | Zbl
and ,On the inverse implication of Brenier-McCann theorems and the structure of . Methods Appl. Anal. 18 (2011) 127–158. | DOI | MR | Zbl
,Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70 (1995) 659–673. | DOI | MR | Zbl
,Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 6 (1998) 199–253. | DOI | MR | Zbl
,Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323. | DOI | MR | Zbl
,F. Otto, Doubly degenerate diffusion equations as steepest descent, manuscript (1996).
The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. | DOI | MR | Zbl
,S. Rasmussen, Non-linear Semi-Groups, Evolution Equations and Product Integral Representations. Aarhus Universitet (1971). | Zbl
Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68–87. | DOI | MR | Zbl
,K. Yosida, Functional Analysis. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the sixth edition (1980). | MR
Cité par Sources :