Optimal blowup time for controlled ordinary differential equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 815-834.

In this work, we study both minimal and maximal blowup time controls for some ordinary differential equations. The existence and Pontryagin’s maximum principle for these problems are derived. As a key preliminary to prove our main results, due to certain monotonicity of the controlled systems, “the initial period optimality” for an optimal triplet is built up. This property reduces our blowup time optimal control problems (where the target set is outside of the state space) to the classical ones (where the target sets are in state spaces).

Reçu le :
DOI : 10.1051/cocv/2014051
Classification : 49J15, 34A34
Mots clés : Optimal blowup time, initial period optimality, existence, maximum principle
Lou, Hongwei 1 ; Wang, Weihan 1

1 School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
@article{COCV_2015__21_3_815_0,
     author = {Lou, Hongwei and Wang, Weihan},
     title = {Optimal blowup time for controlled ordinary differential equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {815--834},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014051},
     mrnumber = {3358631},
     zbl = {1318.49004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014051/}
}
TY  - JOUR
AU  - Lou, Hongwei
AU  - Wang, Weihan
TI  - Optimal blowup time for controlled ordinary differential equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 815
EP  - 834
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014051/
DO  - 10.1051/cocv/2014051
LA  - en
ID  - COCV_2015__21_3_815_0
ER  - 
%0 Journal Article
%A Lou, Hongwei
%A Wang, Weihan
%T Optimal blowup time for controlled ordinary differential equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 815-834
%V 21
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014051/
%R 10.1051/cocv/2014051
%G en
%F COCV_2015__21_3_815_0
Lou, Hongwei; Wang, Weihan. Optimal blowup time for controlled ordinary differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 815-834. doi : 10.1051/cocv/2014051. http://www.numdam.org/articles/10.1051/cocv/2014051/

C. Bandle and H. Brunner, Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97 (1998) 3–22. | DOI | MR | Zbl

E.N. Barron and W. Liu, Optimal control of the blowup time. SIAM J. Control Optim. 34 (1996) 102–123. | DOI | MR | Zbl

M. Escobedo and M.A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system. J. Differ. Equ. 89 (1991) 176–202. | DOI | MR | Zbl

A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control Ser. A 1 (1962) 76–84. | MR | Zbl

R. Glassey, Blow-up theorems for nonlinear wave-equations. Mathematische Zeitschrift 132 (1973) 183–203. | DOI | MR | Zbl

J.-S. Guo and B. Hu, Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary. J. Math. Anal. Appl. 269 (2002) 28–49. | DOI | MR | Zbl

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations. SIAM J. Control Optim. 49 (2011) 73–105. | DOI | MR | Zbl

H. Lou, J. Wen and Y. Xu, Time optimal control problems for some non-smooth systems. Math. Control Relat. Fields 4 (2014) 289–314. | DOI | MR | Zbl

B. Yordanov and Q.S. Zhang, Finite-time blowup for wave equations with a potential. SIAM J. Math. Anal. 36 (2005) 1426–1433. | DOI | MR | Zbl

K. Yosida, Functional analysis, 6th ed. Springer-Verlag, Berlin (1980). | MR

Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity. Nonlin. Anal. Theory Methods Appl. 72 (2010) 4594–4601. | DOI | MR | Zbl

Cité par Sources :