Let
DOI : 10.1051/cocv/2014048
Mots-clés : Fractional Laplacian, maximum principles, Hopf’s Lemma, overdetermined problems
@article{COCV_2015__21_4_924_0, author = {Fall, Mouhamed Moustapha and Jarohs, Sven}, title = {Overdetermined problems with fractional laplacian}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {924--938}, publisher = {EDP-Sciences}, volume = {21}, number = {4}, year = {2015}, doi = {10.1051/cocv/2014048}, zbl = {1329.35223}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014048/} }
TY - JOUR AU - Fall, Mouhamed Moustapha AU - Jarohs, Sven TI - Overdetermined problems with fractional laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 924 EP - 938 VL - 21 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014048/ DO - 10.1051/cocv/2014048 LA - en ID - COCV_2015__21_4_924_0 ER -
%0 Journal Article %A Fall, Mouhamed Moustapha %A Jarohs, Sven %T Overdetermined problems with fractional laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 924-938 %V 21 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014048/ %R 10.1051/cocv/2014048 %G en %F COCV_2015__21_4_924_0
Fall, Mouhamed Moustapha; Jarohs, Sven. Overdetermined problems with fractional laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 924-938. doi : 10.1051/cocv/2014048. https://www.numdam.org/articles/10.1051/cocv/2014048/
Symmetries in an overdetermined problem for the Green’s function. Discrete Contin. Dyn. Syst. Ser. S 4 (2011) 791–800. | Zbl
and ,Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ. Math. 11 (1956) 5–17. | Zbl
,Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. Inst. Henri Poincaré 22 (2005) 83–97. | DOI | Numdam | MR | Zbl
, and ,Overdetermined problems for some fully non linear operators. Comm. Partial Differ. Eq. 38 (2013) 608–628. | DOI | MR | Zbl
and ,Potential Theory of Schrödinger Operator based on fractional Laplacian. Probab. Math. Stat. 20 (2000) 293–335. | MR | Zbl
and ,Serrin-type overdetermined problems: an alternative proof. Arch. Ration. Mech. Anal. 190 (2008) 267–280. | DOI | MR | Zbl
, , and ,A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative. Rend. Circ. Mat. Palermo 51 (2002) 375–390. | DOI | MR | Zbl
and ,
Overdetermined boundary value problems for the
Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006) 330–343. | DOI | MR | Zbl
, and ,Use of the domain derivative to prove symmetry results in partial differential equations. Math. Nachr. 192 (1998) 91–103. | DOI | MR | Zbl
and ,Overdetermined anisotropic elliptic problems. Math. Ann. 345 (2009) 859–881. | DOI | MR | Zbl
and ,Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations. J. Eur. Math. Soc. (JEMS) 9 (2007) 317–330. | DOI | MR | Zbl
, and ,On shape optimization problems involving the fractional laplacian. ESAIM: COCV 19 (2013) 976–1013. | Numdam | MR | Zbl
and ,Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl
, and ,Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15 (2012) 536–555. | DOI | MR | Zbl
,L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl
M.M. Fall, T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Preprint (2013). Available online at: . | arXiv | MR
Remarks on an overdetermined boundary value problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. | DOI | MR | Zbl
and ,Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195 (2010) 1025–1058. | DOI | MR | Zbl
and ,Overdetermined problems in unbounded domains with Lipschitz singularities. Rev. Mat. Iberoam. 26 (2010) 965–974. | DOI | MR | Zbl
and ,P. Felmer, A. Quaas and J. Tan, Positive solutions of Nonlinear Schrödinger equation with the fractional Laplacian. In Vol. 142A, Proc. of Roy. Soc. Edinburgh (2012). | MR | Zbl
Partially overdetermined elliptic boundary value problems. J. Differ. Eq. 245 (2009) 1299–1322. | DOI | MR | Zbl
and ,Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254 (2006) 117–132. | DOI | MR | Zbl
, , and ,P. Felmer and Y. Wang, Radial symmetry of positive solutions involving the fractional Laplacian. Commun. Contemp. Math. (2013). Available at: http://www.worldscientific.com/doi/pdf/10.1142/S0219199713500235. | MR | Zbl
A symmetry result related to some overdetermined boundary value problems. Am. J. Math. 111 (1989) 9–33. | DOI | MR | Zbl
and ,Symmetry and related problems via the maximum principle. Comm. Math. Phys. 68 (1979) 209–243. | DOI | MR | Zbl
, and ,Symmetry of positive solutions of nonlinear equations. Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies A 7 (1981) 369–402. | MR | Zbl
, and ,On an overdetermined elliptic problem. Pacific J. Math. 250 (2011) 319–334. | DOI | MR | Zbl
, and ,Asymptotic symmetry for a class of fractional reaction-diffusion equations. Discrete Contin. Dyn. Syst. 34 (2014) 2581–2615. | DOI | MR | Zbl
, ,Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. 192 (2013) 673–718. | DOI | MR | Zbl
, and ,Serrin’s result for domains with a corner or cusp. Duke Math. J. 91 (1998) 29–31. | DOI | MR | Zbl
,Symmetry problem. Proc. Amer. Math. Soc. 141 (2013) 515–521. | DOI | MR | Zbl
,Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains. Z. Anal. Anwendungen 15 (1996) 619–635. | DOI | MR | Zbl
,Radial symmetry for elliptic boundary-value problems on exterior domains. Arch. Rational Mech. Anal. 137 (1997) 381–394. | DOI | MR | Zbl
,The Dirichlet Problem for the fractional Laplacian: Regularity up to the boundary. J. Math. Pures Appl. 101 (2014) 275–302. | DOI | MR | Zbl
and ,A Symmetry Problem in Potential Theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl
,Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl
,L. Silvestre and B. Sirakov, Overdetermined problems for fully for fully nonlinear elliptic equations. Preprint (2013) available online at: . | arXiv | MR
Symmetry for exterior elliptic problems and two conjectures in potential theory. Ann. Inst. Henri Poincaré Anal. Non Lin. 18 (2001) 135–156. | DOI | Numdam | MR | Zbl
,Remark on the preceding paper of Serrin. Arch. Rational Mech. Anal. 43 (1971) 319–320. | DOI | MR | Zbl
,Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Deutsch. Math.-Ver. 112 (2010) 119–158. | DOI | MR | Zbl
,Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain. Commun. Contemp. Math. 15 (2013) 1250048. | DOI | MR | Zbl
, ,- Qualitative properties of free boundaries for the exterior Bernoulli problem for the half Laplacian, Journal of Mathematical Analysis and Applications, Volume 547 (2025) no. 1, p. 129285 | DOI:10.1016/j.jmaa.2025.129285
- Uniqueness of least energy solutions to the fractional Lane–Emden equation in the ball, Mathematische Annalen, Volume 391 (2025) no. 3, p. 3987 | DOI:10.1007/s00208-024-03019-z
- Asymptotic Monotonicity of Positive Solutions for Fractional Parabolic Equation on the Right Half Space, Acta Applicandae Mathematicae, Volume 190 (2024) no. 1 | DOI:10.1007/s10440-024-00638-1
- Uniqueness and nondegeneracy of least-energy solutions to fractional Dirichlet problems, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 9 | DOI:10.1007/s00526-024-02851-0
- A fractional Hopf Lemma for sign-changing solutions, Communications in Partial Differential Equations, Volume 49 (2024) no. 3, p. 217 | DOI:10.1080/03605302.2024.2337637
- Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents, Journal de Mathématiques Pures et Appliquées, Volume 188 (2024), p. 273 | DOI:10.1016/j.matpur.2024.06.011
- A symmetry result for fully nonlinear problems in exterior domains, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 3 | DOI:10.1007/s00030-024-00930-x
- A Note on Serrin’s Type Problem on Riemannian Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 7 | DOI:10.1007/s12220-024-01650-5
- The role of antisymmetric functions in nonlocal equations, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/8984
- Positive Solutions with High Energy for Fractional Schrödinger Equations, Acta Mathematica Scientia, Volume 43 (2023) no. 3, p. 1116 | DOI:10.1007/s10473-023-0308-z
- A Hopf lemma for the regional fractional Laplacian, Annali di Matematica Pura ed Applicata (1923 -), Volume 202 (2023) no. 1, p. 95 | DOI:10.1007/s10231-022-01234-6
- Boundary regularity of mixed local-nonlocal operators and its application, Annali di Matematica Pura ed Applicata (1923 -), Volume 202 (2023) no. 2, p. 679 | DOI:10.1007/s10231-022-01256-0
- Nonradiality of second fractional eigenfunctions of thin annuli, Communications on Pure and Applied Analysis, Volume 22 (2023) no. 2, p. 613 | DOI:10.3934/cpaa.2023003
- A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth, Forum Mathematicum, Volume 0 (2023) no. 0 | DOI:10.1515/forum-2022-0331
- Small order limit of fractional Dirichlet sublinear-type problems, Fractional Calculus and Applied Analysis, Volume 26 (2023) no. 4, p. 1594 | DOI:10.1007/s13540-023-00169-w
- Quantitative results for fractional overdetermined problems in exterior and annular sets, Journal of Mathematical Analysis and Applications, Volume 524 (2023) no. 1, p. 127070 | DOI:10.1016/j.jmaa.2023.127070
- Stability of ground state eigenvalues of non-local Schrödinger operators with respect to potentials and applications, Journal of Mathematical Analysis and Applications, Volume 527 (2023) no. 2, p. 127549 | DOI:10.1016/j.jmaa.2023.127549
- Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods, Nonlinear Analysis, Volume 236 (2023), p. 113354 | DOI:10.1016/j.na.2023.113354
- Symmetry and quantitative stability for the parallel surface fractional torsion problem, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, p. 3515 | DOI:10.1090/tran/8837
- Small order asymptotics for nonlinear fractional problems, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 3 | DOI:10.1007/s00526-022-02192-w
- Symmetry of odd solutions to equations with fractional Laplacian, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 209 | DOI:10.1007/s41808-022-00146-z
- Some evaluations of the fractional
-Laplace operator on radial functions, Mathematics in Engineering, Volume 5 (2022) no. 1, p. 1 | DOI:10.3934/mine.2023015 - Лемма о нормальной производной и вокруг неe, Успехи математических наук, Volume 77 (2022) no. 2(464), p. 3 | DOI:10.4213/rm10049
- Morse index versus radial symmetry for fractional Dirichlet problems, Advances in Mathematics, Volume 384 (2021), p. 107728 | DOI:10.1016/j.aim.2021.107728
- A fractional Hadamard formula and applications, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02094-3
- Some monotonicity results for the fractional Laplacian in unbounded domain, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 4, p. 689 | DOI:10.1080/17476933.2020.1736053
- Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, Journal of Differential Equations, Volume 270 (2021), p. 1043 | DOI:10.1016/j.jde.2020.09.001
- Monotonicity of positive solutions for nonlocal problems in unbounded domains, Journal of Functional Analysis, Volume 281 (2021) no. 9, p. 109187 | DOI:10.1016/j.jfa.2021.109187
- Hopf’s lemma for viscosity solutions to a class of non-local equations with applications, Nonlinear Analysis, Volume 204 (2021), p. 112194 | DOI:10.1016/j.na.2020.112194
- Gradient Estimates in Fractional Dirichlet Problems, Potential Analysis, Volume 54 (2021) no. 4, p. 627 | DOI:10.1007/s11118-020-09842-8
- Semilinear elliptic equations involving mixed local and nonlocal operators, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 5, p. 1611 | DOI:10.1017/prm.2020.75
- Overdetermined Boundary Value Problems for the Infinity Laplace Equation, Pure Mathematics, Volume 11 (2021) no. 02, p. 164 | DOI:10.12677/pm.2021.112023
- On overdetermined problems for a general class of nonlocal operators, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 2368 | DOI:10.1016/j.jde.2019.09.010
- Fine boundary regularity for the degenerate fractional p-Laplacian, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 108659 | DOI:10.1016/j.jfa.2020.108659
- Harnack‐type inequality for fractional elliptic equations with critical exponent, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 8, p. 5380 | DOI:10.1002/mma.6280
- Convergence of solutions for the fractional Cahn–Hilliard system, Journal of Functional Analysis, Volume 276 (2019) no. 9, p. 2663 | DOI:10.1016/j.jfa.2019.01.006
- Starshapedness of the superlevel sets of solutions to equations involving the fractional Laplacian in starshaped rings, Mathematische Nachrichten, Volume 292 (2019) no. 5, p. 1008 | DOI:10.1002/mana.201700226
- Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings, Advanced Nonlinear Studies, Volume 18 (2018) no. 4, p. 691 | DOI:10.1515/ans-2017-6039
- Curves and surfaces with constant nonlocal mean curvature: Meeting Alexandrov and Delaunay, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 745, p. 253 | DOI:10.1515/crelle-2015-0117
- All Functions Are (Locally) s-Harmonic (up to a Small Error)—and Applications, Partial Differential Equations and Geometric Measure Theory, Volume 2211 (2018), p. 197 | DOI:10.1007/978-3-319-74042-3_3
- Paths to uniqueness of critical points and applications to partial differential equations, Transactions of the American Mathematical Society, Volume 370 (2018) no. 10, p. 7081 | DOI:10.1090/tran/7231
- Pohozaev identities for anisotropic integrodifferential operators, Communications in Partial Differential Equations, Volume 42 (2017) no. 8, p. 1290 | DOI:10.1080/03605302.2017.1349148
- Monotonicity and symmetry of fractional Lane–Emden-type equation in the parabolic domain, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 1, p. 135 | DOI:10.1080/17476933.2016.1208185
- A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Frontiers of Mathematics in China, Volume 12 (2017) no. 2, p. 389 | DOI:10.1007/s11464-016-0517-z
- A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, Journal of Differential Equations, Volume 263 (2017) no. 1, p. 765 | DOI:10.1016/j.jde.2017.02.051
- On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Mathematische Annalen, Volume 369 (2017) no. 3-4, p. 1283 | DOI:10.1007/s00208-016-1487-x
- Constrained radial symmetry for the infinity-Laplacian, Nonlinear Analysis: Real World Applications, Volume 37 (2017), p. 239 | DOI:10.1016/j.nonrwa.2017.02.016
- Symmetry results for positive solutions of mixed integro-differential equations, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 2, p. 909 | DOI:10.1016/j.jmaa.2016.02.023
- Some overdetermined problems for the fractional Laplacian equation on the exterior domain and the annular domain, Nonlinear Analysis: Theory, Methods Applications, Volume 139 (2016), p. 196 | DOI:10.1016/j.na.2016.02.019
- Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0386-x
- Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, arXiv (2015) | DOI:10.48550/arxiv.1503.00469 | arXiv:1503.00469
- Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, arXiv (2014) | DOI:10.48550/arxiv.1406.6181 | arXiv:1406.6181
- Positive solutions to some nonlinear fractional Schrödinger equations via a min-max procedure, arXiv (2013) | DOI:10.48550/arxiv.1312.7068 | arXiv:1312.7068
Cité par 53 documents. Sources : Crossref, NASA ADS