Overdetermined problems with fractional laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 924-938.

Let N1 and s(0,1). In the present work we characterize bounded open sets Ω with C2 boundary (not necessarily connected) for which the following overdetermined problem

(-Δ)su=f(u)inΩ;u=0inNΩ;(η)su=Const.onΩ
has a nonnegative and nontrivial solution, where η is the outer unit normal vectorfield along Ω and for x0Ω
ηsu(x0)=-limt0u(x0-tη(x0))ts.
Under mild assumptions on f, we prove that Ω must be a ball. In the special case f1, we obtain an extension of Serrin’s result in 1971. The fact that Ω is not assumed to be connected is related to the nonlocal property of the fractional Laplacian. The main ingredients in our proof are maximum principles and the method of moving planes.

Reçu le :
DOI : 10.1051/cocv/2014048
Classification : 35B50, 35N25
Mots-clés : Fractional Laplacian, maximum principles, Hopf’s Lemma, overdetermined problems
Fall, Mouhamed Moustapha 1 ; Jarohs, Sven 2

1 African Institute for Mathematical Sciences of Senegal. Km 2, Route de Joal. BP 1418 Mbour, Senegal
2 Goethe-Universität Frankfurt, Institut für Mathematik. Robert-Mayer-Str. 10, 60054 Frankfurt, Germany
@article{COCV_2015__21_4_924_0,
     author = {Fall, Mouhamed Moustapha and Jarohs, Sven},
     title = {Overdetermined problems with fractional laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {924--938},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014048},
     zbl = {1329.35223},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2014048/}
}
TY  - JOUR
AU  - Fall, Mouhamed Moustapha
AU  - Jarohs, Sven
TI  - Overdetermined problems with fractional laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 924
EP  - 938
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2014048/
DO  - 10.1051/cocv/2014048
LA  - en
ID  - COCV_2015__21_4_924_0
ER  - 
%0 Journal Article
%A Fall, Mouhamed Moustapha
%A Jarohs, Sven
%T Overdetermined problems with fractional laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 924-938
%V 21
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2014048/
%R 10.1051/cocv/2014048
%G en
%F COCV_2015__21_4_924_0
Fall, Mouhamed Moustapha; Jarohs, Sven. Overdetermined problems with fractional laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 924-938. doi : 10.1051/cocv/2014048. https://www.numdam.org/articles/10.1051/cocv/2014048/

V. Agostiniani and R. Magnanini, Symmetries in an overdetermined problem for the Green’s function. Discrete Contin. Dyn. Syst. Ser. S 4 (2011) 791–800. | Zbl

A.D. Alexandrov, Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ. Math. 11 (1956) 5–17. | Zbl

M. Birkner, J.A. López-Mimbela and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. Inst. Henri Poincaré 22 (2005) 83–97. | DOI | Numdam | MR | Zbl

I. Birindelli and F. Demengel, Overdetermined problems for some fully non linear operators. Comm. Partial Differ. Eq. 38 (2013) 608–628. | DOI | MR | Zbl

K. Bogdan and T. Byczkowski, Potential Theory of Schrödinger Operator based on fractional Laplacian. Probab. Math. Stat. 20 (2000) 293–335. | MR | Zbl

B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, Serrin-type overdetermined problems: an alternative proof. Arch. Ration. Mech. Anal. 190 (2008) 267–280. | DOI | MR | Zbl

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative. Rend. Circ. Mat. Palermo 51 (2002) 375–390. | DOI | MR | Zbl

G. Buttazzo, and B. Kawohl, Overdetermined boundary value problems for the -laplacian. Int. Math. Res. Not. 2011 (2011) 237–247. | MR | Zbl

W. Chen, C. Li and Biao Ou, Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006) 330–343. | DOI | MR | Zbl

M. Choulli and A. Henrot, Use of the domain derivative to prove symmetry results in partial differential equations. Math. Nachr. 192 (1998) 91–103. | DOI | MR | Zbl

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems. Math. Ann. 345 (2009) 859–881. | DOI | MR | Zbl

F. Da Lio, and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations. J. Eur. Math. Soc. (JEMS) 9 (2007) 317–330. | DOI | MR | Zbl

A.-L. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional laplacian. ESAIM: COCV 19 (2013) 976–1013. | Numdam | MR | Zbl

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15 (2012) 536–555. | DOI | MR | Zbl

L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl

M.M. Fall, T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Preprint (2013). Available online at: . | arXiv | MR

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. | DOI | MR | Zbl

A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195 (2010) 1025–1058. | DOI | MR | Zbl

A. Farina and E. Valdinoci, Overdetermined problems in unbounded domains with Lipschitz singularities. Rev. Mat. Iberoam. 26 (2010) 965–974. | DOI | MR | Zbl

P. Felmer, A. Quaas and J. Tan, Positive solutions of Nonlinear Schrödinger equation with the fractional Laplacian. In Vol. 142A, Proc. of Roy. Soc. Edinburgh (2012). | MR | Zbl

I. Fragalà and F. Gazzola, Partially overdetermined elliptic boundary value problems. J. Differ. Eq. 245 (2009) 1299–1322. | DOI | MR | Zbl

I. Fragalà, F. Gazzola, and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254 (2006) 117–132. | DOI | MR | Zbl

P. Felmer and Y. Wang, Radial symmetry of positive solutions involving the fractional Laplacian. Commun. Contemp. Math. (2013). Available at: http://www.worldscientific.com/doi/pdf/10.1142/S0219199713500235. | MR | Zbl

N. Garofalo and J.L. Lewis, A symmetry result related to some overdetermined boundary value problems. Am. J. Math. 111 (1989) 9–33. | DOI | MR | Zbl

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related problems via the maximum principle. Comm. Math. Phys. 68 (1979) 209–243. | DOI | MR | Zbl

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear equations. Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies A 7 (1981) 369–402. | MR | Zbl

L. Hauswirth, F. Hélein and F. Pacard, On an overdetermined elliptic problem. Pacific J. Math. 250 (2011) 319–334. | DOI | MR | Zbl

S. Jarohs, T. Weth, Asymptotic symmetry for a class of fractional reaction-diffusion equations. Discrete Contin. Dyn. Syst. 34 (2014) 2581–2615. | DOI | MR | Zbl

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. 192 (2013) 673–718. | DOI | MR | Zbl

J. Prajapat, Serrin’s result for domains with a corner or cusp. Duke Math. J. 91 (1998) 29–31. | DOI | MR | Zbl

A.G. Ramm, Symmetry problem. Proc. Amer. Math. Soc. 141 (2013) 515–521. | DOI | MR | Zbl

W. Reichel, Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains. Z. Anal. Anwendungen 15 (1996) 619–635. | DOI | MR | Zbl

W Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains. Arch. Rational Mech. Anal. 137 (1997) 381–394. | DOI | MR | Zbl

X. Ros-Oton and J. Serra, The Dirichlet Problem for the fractional Laplacian: Regularity up to the boundary. J. Math. Pures Appl. 101 (2014) 275–302. | DOI | MR | Zbl

J. Serrin, A Symmetry Problem in Potential Theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl

L. Silvestre and B. Sirakov, Overdetermined problems for fully for fully nonlinear elliptic equations. Preprint (2013) available online at: . | arXiv | MR

B. Sirakov, Symmetry for exterior elliptic problems and two conjectures in potential theory. Ann. Inst. Henri Poincaré Anal. Non Lin. 18 (2001) 135–156. | DOI | Numdam | MR | Zbl

H.F. Weinberger, Remark on the preceding paper of Serrin. Arch. Rational Mech. Anal. 43 (1971) 319–320. | DOI | MR | Zbl

T. Weth, Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Deutsch. Math.-Ver. 112 (2010) 119–158. | DOI | MR | Zbl

S.Y. Yolcu, T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain. Commun. Contemp. Math. 15 (2013) 1250048. | DOI | MR | Zbl

  • Jarohs, Sven; Kulczycki, Tadeusz; Salani, Paolo Qualitative properties of free boundaries for the exterior Bernoulli problem for the half Laplacian, Journal of Mathematical Analysis and Applications, Volume 547 (2025) no. 1, p. 129285 | DOI:10.1016/j.jmaa.2025.129285
  • DelaTorre, Azahara; Parini, Enea Uniqueness of least energy solutions to the fractional Lane–Emden equation in the ball, Mathematische Annalen, Volume 391 (2025) no. 3, p. 3987 | DOI:10.1007/s00208-024-03019-z
  • Li, Dongyan; Dong, Yan Asymptotic Monotonicity of Positive Solutions for Fractional Parabolic Equation on the Right Half Space, Acta Applicandae Mathematicae, Volume 190 (2024) no. 1 | DOI:10.1007/s10440-024-00638-1
  • Dieb, Abdelrazek; Ianni, Isabella; Saldaña, Alberto Uniqueness and nondegeneracy of least-energy solutions to fractional Dirichlet problems, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 9 | DOI:10.1007/s00526-024-02851-0
  • Dipierro, Serena; Soave, Nicola; Valdinoci, Enrico A fractional Hopf Lemma for sign-changing solutions, Communications in Partial Differential Equations, Volume 49 (2024) no. 3, p. 217 | DOI:10.1080/03605302.2024.2337637
  • Dipierro, Serena; Poggesi, Giorgio; Thompson, Jack; Valdinoci, Enrico Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents, Journal de Mathématiques Pures et Appliquées, Volume 188 (2024), p. 273 | DOI:10.1016/j.matpur.2024.06.011
  • Stolnicki, David A symmetry result for fully nonlinear problems in exterior domains, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 3 | DOI:10.1007/s00030-024-00930-x
  • Freitas, Allan; Roncoroni, Alberto; Santos, Márcio A Note on Serrin’s Type Problem on Riemannian Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 7 | DOI:10.1007/s12220-024-01650-5
  • Dipierro, Serena; Poggesi, Giorgio; Thompson, Jack; Valdinoci, Enrico The role of antisymmetric functions in nonlocal equations, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/8984
  • Guo, Qing; Zhao, Leiga Positive Solutions with High Energy for Fractional Schrödinger Equations, Acta Mathematica Scientia, Volume 43 (2023) no. 3, p. 1116 | DOI:10.1007/s10473-023-0308-z
  • Abatangelo, Nicola; Fall, Mouhamed Moustapha; Temgoua, Remi Yvant A Hopf lemma for the regional fractional Laplacian, Annali di Matematica Pura ed Applicata (1923 -), Volume 202 (2023) no. 1, p. 95 | DOI:10.1007/s10231-022-01234-6
  • Biswas, Anup; Modasiya, Mitesh; Sen, Abhrojyoti Boundary regularity of mixed local-nonlocal operators and its application, Annali di Matematica Pura ed Applicata (1923 -), Volume 202 (2023) no. 2, p. 679 | DOI:10.1007/s10231-022-01256-0
  • Djitte, Sidy M.; Jarohs, Sven Nonradiality of second fractional eigenfunctions of thin annuli, Communications on Pure and Applied Analysis, Volume 22 (2023) no. 2, p. 613 | DOI:10.3934/cpaa.2023003
  • Sen, Abhrojyoti A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth, Forum Mathematicum, Volume 0 (2023) no. 0 | DOI:10.1515/forum-2022-0331
  • Angeles, Felipe; Saldaña, Alberto Small order limit of fractional Dirichlet sublinear-type problems, Fractional Calculus and Applied Analysis, Volume 26 (2023) no. 4, p. 1594 | DOI:10.1007/s13540-023-00169-w
  • Ciraolo, Giulio; Pollastro, Luigi Quantitative results for fractional overdetermined problems in exterior and annular sets, Journal of Mathematical Analysis and Applications, Volume 524 (2023) no. 1, p. 127070 | DOI:10.1016/j.jmaa.2023.127070
  • Ascione, Giacomo; Lőrinczi, József Stability of ground state eigenvalues of non-local Schrödinger operators with respect to potentials and applications, Journal of Mathematical Analysis and Applications, Volume 527 (2023) no. 2, p. 127549 | DOI:10.1016/j.jmaa.2023.127549
  • Dieb, Abdelrazek; Ianni, Isabella; Saldaña, Alberto Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods, Nonlinear Analysis, Volume 236 (2023), p. 113354 | DOI:10.1016/j.na.2023.113354
  • Ciraolo, Giulio; Dipierro, Serena; Poggesi, Giorgio; Pollastro, Luigi; Valdinoci, Enrico Symmetry and quantitative stability for the parallel surface fractional torsion problem, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, p. 3515 | DOI:10.1090/tran/8837
  • Hernández Santamaría, Víctor; Saldaña, Alberto Small order asymptotics for nonlinear fractional problems, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 3 | DOI:10.1007/s00526-022-02192-w
  • Djitte, Sidy M.; Jarohs, Sven Symmetry of odd solutions to equations with fractional Laplacian, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 209 | DOI:10.1007/s41808-022-00146-z
  • Colasuonno, Francesca; Ferrari, Fausto; Gervasio, Paola; Quarteroni, Alfio Some evaluations of the fractional p-Laplace operator on radial functions, Mathematics in Engineering, Volume 5 (2022) no. 1, p. 1 | DOI:10.3934/mine.2023015
  • Apushkinskaya, Darya Evgen'evna; Nazarov, Alexander Il'ich Лемма о нормальной производной и вокруг неe, Успехи математических наук, Volume 77 (2022) no. 2(464), p. 3 | DOI:10.4213/rm10049
  • Fall, Mouhamed Moustapha; Feulefack, Pierre Aime; Temgoua, Remi Yvant; Weth, Tobias Morse index versus radial symmetry for fractional Dirichlet problems, Advances in Mathematics, Volume 384 (2021), p. 107728 | DOI:10.1016/j.aim.2021.107728
  • Djitte, Sidy Moctar; Fall, Mouhamed Moustapha; Weth, Tobias A fractional Hadamard formula and applications, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02094-3
  • Wu, Leyun; Yu, Mei Some monotonicity results for the fractional Laplacian in unbounded domain, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 4, p. 689 | DOI:10.1080/17476933.2020.1736053
  • Liu, Zhao Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, Journal of Differential Equations, Volume 270 (2021), p. 1043 | DOI:10.1016/j.jde.2020.09.001
  • Chen, Wenxiong; Hu, Yunyun Monotonicity of positive solutions for nonlocal problems in unbounded domains, Journal of Functional Analysis, Volume 281 (2021) no. 9, p. 109187 | DOI:10.1016/j.jfa.2021.109187
  • Biswas, Anup; Lőrinczi, József Hopf’s lemma for viscosity solutions to a class of non-local equations with applications, Nonlinear Analysis, Volume 204 (2021), p. 112194 | DOI:10.1016/j.na.2020.112194
  • Fall, Mouhamed Moustapha; Jarohs, Sven Gradient Estimates in Fractional Dirichlet Problems, Potential Analysis, Volume 54 (2021) no. 4, p. 627 | DOI:10.1007/s11118-020-09842-8
  • Biagi, Stefano; Vecchi, Eugenio; Dipierro, Serena; Valdinoci, Enrico Semilinear elliptic equations involving mixed local and nonlocal operators, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 5, p. 1611 | DOI:10.1017/prm.2020.75
  • 李, 艳辉 Overdetermined Boundary Value Problems for the Infinity Laplace Equation, Pure Mathematics, Volume 11 (2021) no. 02, p. 164 | DOI:10.12677/pm.2021.112023
  • Biswas, Anup; Jarohs, Sven On overdetermined problems for a general class of nonlocal operators, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 2368 | DOI:10.1016/j.jde.2019.09.010
  • Iannizzotto, Antonio; Mosconi, Sunra J.N.; Squassina, Marco Fine boundary regularity for the degenerate fractional p-Laplacian, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 108659 | DOI:10.1016/j.jfa.2020.108659
  • Huang, Shuibo; Tian, Qiaoyu Harnack‐type inequality for fractional elliptic equations with critical exponent, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 8, p. 5380 | DOI:10.1002/mma.6280
  • Akagi, Goro; Schimperna, Giulio; Segatti, Antonio Convergence of solutions for the fractional Cahn–Hilliard system, Journal of Functional Analysis, Volume 276 (2019) no. 9, p. 2663 | DOI:10.1016/j.jfa.2019.01.006
  • Jarohs, Sven; Kulczycki, Tadeusz; Salani, Paolo Starshapedness of the superlevel sets of solutions to equations involving the fractional Laplacian in starshaped rings, Mathematische Nachrichten, Volume 292 (2019) no. 5, p. 1008 | DOI:10.1002/mana.201700226
  • Jarohs, Sven Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings, Advanced Nonlinear Studies, Volume 18 (2018) no. 4, p. 691 | DOI:10.1515/ans-2017-6039
  • Cabré, Xavier; Fall, Mouhamed Moustapha; Solà-Morales, Joan; Weth, Tobias Curves and surfaces with constant nonlocal mean curvature: Meeting Alexandrov and Delaunay, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 745, p. 253 | DOI:10.1515/crelle-2015-0117
  • Valdinoci, Enrico All Functions Are (Locally) s-Harmonic (up to a Small Error)—and Applications, Partial Differential Equations and Geometric Measure Theory, Volume 2211 (2018), p. 197 | DOI:10.1007/978-3-319-74042-3_3
  • Bonheure, Denis; Földes, Juraj; dos Santos, Ederson; Saldaña, Alberto; Tavares, Hugo Paths to uniqueness of critical points and applications to partial differential equations, Transactions of the American Mathematical Society, Volume 370 (2018) no. 10, p. 7081 | DOI:10.1090/tran/7231
  • Ros-Oton, Xavier; Serra, Joaquim; Valdinoci, Enrico Pohozaev identities for anisotropic integrodifferential operators, Communications in Partial Differential Equations, Volume 42 (2017) no. 8, p. 1290 | DOI:10.1080/03605302.2017.1349148
  • Li, Jing Monotonicity and symmetry of fractional Lane–Emden-type equation in the parabolic domain, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 1, p. 135 | DOI:10.1080/17476933.2016.1208185
  • Li, Dongsheng; Li, Zhenjie A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Frontiers of Mathematics in China, Volume 12 (2017) no. 2, p. 389 | DOI:10.1007/s11464-016-0517-z
  • Del Pezzo, Leandro M.; Quaas, Alexander A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, Journal of Differential Equations, Volume 263 (2017) no. 1, p. 765 | DOI:10.1016/j.jde.2017.02.051
  • Dipierro, Serena; Soave, Nicola; Valdinoci, Enrico On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Mathematische Annalen, Volume 369 (2017) no. 3-4, p. 1283 | DOI:10.1007/s00208-016-1487-x
  • Greco, Antonio Constrained radial symmetry for the infinity-Laplacian, Nonlinear Analysis: Real World Applications, Volume 37 (2017), p. 239 | DOI:10.1016/j.nonrwa.2017.02.016
  • dos Prazeres, Disson; Wang, Ying Symmetry results for positive solutions of mixed integro-differential equations, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 2, p. 909 | DOI:10.1016/j.jmaa.2016.02.023
  • Li, Dongsheng; Li, Zhenjie Some overdetermined problems for the fractional Laplacian equation on the exterior domain and the annular domain, Nonlinear Analysis: Theory, Methods Applications, Volume 139 (2016), p. 196 | DOI:10.1016/j.na.2016.02.019
  • Jarohs, Sven Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0386-x
  • Cabre, Xavier; Moustapha Fall, Mouhamed; Solà-Morales, Joan; Weth, Tobias Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, arXiv (2015) | DOI:10.48550/arxiv.1503.00469 | arXiv:1503.00469
  • Jarohs, Sven; Weth, Tobias Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, arXiv (2014) | DOI:10.48550/arxiv.1406.6181 | arXiv:1406.6181
  • Evéquoz, Gilles; Moustapha Fall, Mouhamed Positive solutions to some nonlinear fractional Schrödinger equations via a min-max procedure, arXiv (2013) | DOI:10.48550/arxiv.1312.7068 | arXiv:1312.7068

Cité par 53 documents. Sources : Crossref, NASA ADS