We develop sharp upper bounds for energy levels of the magnetic Laplacian on starlike plane domains, under either Dirichlet or Neumann boundary conditions and assuming a constant magnetic field in the transverse direction. Our main result says that is maximal for a disk whenever is concave increasing, , the domain has area , and is the th Dirichlet eigenvalue of the magnetic Laplacian . Here the flux is constant, and the scale invariant factor penalizes deviations from roundness, meaning for all domains and for disks.
Mots-clés : Isoperimetric, spectral zeta, heat trace, partition function, Pauli operator
@article{COCV_2015__21_3_670_0, author = {Laugesen, R.S. and Siudeja, B.A.}, title = {Magnetic spectral bounds on starlike plane domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {670--689}, publisher = {EDP-Sciences}, volume = {21}, number = {3}, year = {2015}, doi = {10.1051/cocv/2014043}, zbl = {1319.35130}, mrnumber = {3358626}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014043/} }
TY - JOUR AU - Laugesen, R.S. AU - Siudeja, B.A. TI - Magnetic spectral bounds on starlike plane domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 670 EP - 689 VL - 21 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014043/ DO - 10.1051/cocv/2014043 LA - en ID - COCV_2015__21_3_670_0 ER -
%0 Journal Article %A Laugesen, R.S. %A Siudeja, B.A. %T Magnetic spectral bounds on starlike plane domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 670-689 %V 21 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014043/ %R 10.1051/cocv/2014043 %G en %F COCV_2015__21_3_670_0
Laugesen, R.S.; Siudeja, B.A. Magnetic spectral bounds on starlike plane domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 670-689. doi : 10.1051/cocv/2014043. http://www.numdam.org/articles/10.1051/cocv/2014043/
Ground state of a spin-1 / 2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19 (1979) 2461–2462. | DOI | MR
and ,M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. In Vol. 76. Proc. of Sympos. Pure Math. Amer. Math. Soc. Providence, RI (2007) 105–139. | MR | Zbl
C. Bandle, Isoperimetric Inequalities and Applications. In Vol. 7 of Monogr. Stud. Math. Pitman (Advanced Publishing Program), Boston, Mass. (1980). | MR | Zbl
R.D. Benguria and H. Linde, Isoperimetric inequalities for eigenvalues of the LaPlace operator. Fourth Summer School in Analysis and Mathematical Physics. In Vol. 476 of Contemp. Math. Amer. Math. Soc. Providence, RI (2008) 1–40. | MR | Zbl
Computations of the first eigenpairs for the Schrödinger operator with magnetic field. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3841–3858. | DOI | MR | Zbl
, , and ,Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. Partial Differ. Eqs. 4 (1996) 283–292. | DOI | MR | Zbl
,L. Erdös, Recent developments in quantum mechanics with magnetic fields, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. In Vol. 76, Part 1. Proc. of Sympos. Pure Math. Amer. Math. Soc. Providence, RI (2007) 401–428. | MR | Zbl
Diamagnetic behavior of sums of Dirichlet eigenvalues. Ann. Inst. Fourier, Grenoble 50 (2000) 891–907. | DOI | Numdam | MR | Zbl
, and ,S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity. In Vol. 77 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser Boston, Inc., Boston, MA (2010). | MR | Zbl
Eigenvalue estimates for magnetic Schrödinger operators in domains. Proc. Amer. Math. Soc. 136 (2008) 4245–4255. | DOI | MR | Zbl
, and ,Pólya’s conjecture in the presence of a constant magnetic field. J. Eur. Math. Soc. (JEMS) 11 (2009) 1365–1383. | DOI | MR | Zbl
, and ,Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185 (2001) 604–680. | DOI | MR | Zbl
and ,A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). | MR | Zbl
D. Henry, Perturbation of the Boundary in Boundary-value Problems of Partial Differential Equations. With editorial assistance from Jack Hale and Antônio Luiz Pereira. In Vol. 318 of London Math. Soc. Lect. Note Series. Cambridge University Press, Cambridge (2005). | MR | Zbl
S. Kesavan, Symmetrization and Applications. In Vol. 3 of Series in Analysis. World Scientific Publishing Co., Hackensack, NJ (2006). | MR | Zbl
Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184 (2000) 87–111. | DOI | MR | Zbl
and ,Sums of magnetic eigenvalues are maximal on rotationally symmetric domains. Ann. Henri Poincaré 13 (2012) 731–750. | DOI | MR | Zbl
, and ,Sharp spectral bounds on starlike domains. J. Spectral Theory 4 (2014) 309–347. | DOI | MR | Zbl
and ,Generalized isoperimetric inequalities. J. Math. Phys. 14 (1973) 586–593, 1444–1447, 1448–1450. | DOI | MR
,NIST Digital Library of Mathematical Functions. Release 1.0.8 of 2014-04-25. Available at http://dlmf.nist.gov/.
G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. In Vol. 27 of Ann. Math. Stud. Princeton University Press, Princeton, N.J. (1951). | MR | Zbl
Etude du champ critique dans une geometrie cylindrique. Phys. Lett. 15 (1965) 13–15. | DOI
,S. Son, Spectral Problems on Triangles And Disks: Extremizers and Ground States. Ph.D. thesis, University of Illinois at Urbana-Champaign (2014). Available at https://www.ideals.illinois.edu/handle/2142/49349. | MR
J.W. Strutt (Lord Rayleigh), The Theory of Sound. In Vol. 1, 2nd edition. Macmillan and Co., London (1894). | JFM | Zbl
Cité par Sources :