Sharp interface limit for two components Bose−Einstein condensates
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 603-624.

We study a double Cahn−Hilliard type functional related to the Gross−Pitaevskii energy of two-components Bose−Einstein condensates. In the case of large but same order intercomponent and intracomponent coupling strengths, we prove Γ-convergence to a perimeter minimisation functional with an inhomogeneous surface tension. We study the asymptotic behavior of the surface tension as the ratio between the intercomponent and intracomponent coupling strengths becomes very small or very large and obtain good agreement with the physical literature. We obtain as a consequence, symmetry breaking of the minimisers for the harmonic potential.

Reçu le :
DOI : 10.1051/cocv/2014040
Classification : 35Q40, 35J50, 49S05, 49Q20
Mots clés : Bose-Einstein condensates, Γ-convergence, BV functions, isoperimetric problems
Goldman, M. 1 ; Royo-Letelier, J. 2

1 Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany
2 Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
@article{COCV_2015__21_3_603_0,
     author = {Goldman, M. and Royo-Letelier, J.},
     title = {Sharp interface limit for two components {Bose\ensuremath{-}Einstein} condensates},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {603--624},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014040},
     mrnumber = {3358623},
     zbl = {1319.35206},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014040/}
}
TY  - JOUR
AU  - Goldman, M.
AU  - Royo-Letelier, J.
TI  - Sharp interface limit for two components Bose−Einstein condensates
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 603
EP  - 624
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014040/
DO  - 10.1051/cocv/2014040
LA  - en
ID  - COCV_2015__21_3_603_0
ER  - 
%0 Journal Article
%A Goldman, M.
%A Royo-Letelier, J.
%T Sharp interface limit for two components Bose−Einstein condensates
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 603-624
%V 21
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014040/
%R 10.1051/cocv/2014040
%G en
%F COCV_2015__21_3_603_0
Goldman, M.; Royo-Letelier, J. Sharp interface limit for two components Bose−Einstein condensates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 603-624. doi : 10.1051/cocv/2014040. http://www.numdam.org/articles/10.1051/cocv/2014040/

A. Aftalion, Vortices in Bose−Einstein Condensates, vol. 67 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser (2006). | MR | Zbl

A. Aftalion, R.L. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260 (2011) 2387–2406. | DOI | MR | Zbl

A. Aftalion and J. Royo-Letelier, A minimal interface problem arising from a two component Bose−Einstein condensate via Γ-convergence. Calc. Var. Partial Differ. Eqs. 52 (2015) 165–197. | DOI | MR | Zbl

L. Ambrosio, N Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford University Press (2000). | MR | Zbl

L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105–123. | MR | Zbl

P. Ao and S.T. Chui, Binary Bose−Einstein condensate mixtures in weakly and strongly segregated phases. Phys. Rev. A 58 (1998) 4836–4840. | DOI

R. A. Barankov, Boundary of two mixed Bose−Einstein condensates. Phys. Rev. A 66 (2002) 013612. | DOI

H. Berestycki, T.C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208 (2013) 163–200. | DOI | MR | Zbl

H. Berestycki, S. Terracini, K. Wang and J. Wei, On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243 (2013) 102–126. | DOI | MR | Zbl

G. Bouchitté, Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. Optim. 21 (1990) 289–314. | DOI | MR | Zbl

A Braides, Approximation of Free-Discontinuity Problems. Vol. 1694 of Lect. Notes Math. Springer Berlin Heidelberg (1998). | MR | Zbl

A. Braides, Γ-convergence for beginners. Vol. 22. Oxford Lect. Series Math. Appl. Oxford University Press, Oxford (2002). | MR | Zbl

A. Capella, C. Melcher and F. Otto, Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls. Nonlinearity 20 (2007) 2519–2537. | DOI | MR | Zbl

M. Chermisi and C. Muratov, One-dimensional Néel walls under applied magnetic fields. Nonlinearity 26 (2013) 2935–2950. | DOI | MR | Zbl

M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195 (2005) 524–560. | DOI | MR | Zbl

D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman and E.A. Cornell, Dynamics of component separation in a binary mixture of Bose−Einstein condensates. Phys. Rev. Lett. 81 (1998) 1539–1542. | DOI

R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose−Einstein condensate. J. Funct. Anal. 233 (2006) 260–306. | DOI | MR | Zbl

G.D. Karali and C. Sourdis, The ground state of a Gross−Pitaevskii energy with general potential in the Thomas−Fermi limit. To appear in Arch. Rational Mech. Anal. (2015) Doi:. | DOI | MR

K. Kasamatsu, M. Tsubota and M. Ueda, Vortices in multicomponent Bose−Einstein condensates. Int. J. Mod. Phys. B 19 (1835) 2005. | Zbl

K. Kasamatsu, Y. Yasui and M. Tsubota, Macroscopic quantum tunneling of two-component Bose−Einstein condensates. Phys. Rev. A 64 (053605) (2001). | DOI

L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. | DOI | MR | Zbl

E.H. Lieb and M. Loss, Analysis. In vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI (1997). | MR | Zbl

P. Mason and A. Aftalion, Classification of the ground states and topological defects in a rotating two-component Bose−Einstein condensate. Phys. Rev. A 84 (2011) 033611. | DOI

I.E. Mazets, Waves on an interface between two phase-separated Bose−Einstein condensates. Phys. Rev. A 65 (2002) 033618. | DOI

D.J. Mccarron, H.W. Cho, D.L. Jenkin, M. P. Köppinger and S.L. Cornish, Dual-species Bose−Einstein condensate of 87 Rb and 133 Cs. Phys. Rev. A 84 (2011) 011603.

L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. | DOI | MR | Zbl

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math. 63 (2010) 267–302. | DOI | MR | Zbl

P. Öhberg and S. Stenholm, Hartree−Fock treatment of the two-component Bose−Einstein condensate. Phys. Rev. A 57 (1998) 1272–1279. | DOI

S.B. Papp, J.M. Pino and C.E. Wieman, Tunable miscibility in a dual-species Bose−Einstein condensate. Phys. Rev. Lett. 101 (2008) 040402. | DOI

J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose−Einstein condensates in a harmonic trap. Calc. Var. Partial Differ. Eqs. 49 (2014) 103–124. | DOI | MR | Zbl

E. Timmermans, Phase separation of Bose−Einstein condensates. Phys. Rev. Lett. 81 (1998) 5718–5721. | DOI

B. Van Schaeybroeck, Interface tension of Bose−Einstein condensates. Phys. Rev. A 78 (2008) 023624. | DOI

J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21 (2008) 305–317. | DOI | MR | Zbl

Cité par Sources :