Optimal -Quasiconformal Immersions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 561-582.

For a Hamiltonian KC 2 (R N×n ) and a map u:ΩR n -R N , we consider the supremal functional

(1)
The “Euler−Lagrange” PDE associated to (1)is the quasilinear system
A u:=K P K P +K[K P ] K PP (Du):D 2 u=0.(2)
Here K P is the derivative and [K P ] is the projection on its nullspace. (1)and (2)are the fundamental objects of vector-valued Calculus of Variations in L and first arose in recent work of the author [N. Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124]. Herein we apply our results to Geometric Analysis by choosing as K the dilation function
K(P)=|P| 2 det(P P) -1/n
which measures the deviation of u from being conformal. Our main result is that appropriately defined minimisers of (1)solve (2). Hence, PDE methods can be used to study optimised quasiconformal maps. Nonconvexity of K and appearance of interfaces where [K P ] is discontinuous cause extra difficulties. When n=N, this approach has previously been followed by Capogna−Raich ? and relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.

DOI : 10.1051/cocv/2014038
Classification : 30C70, 30C75, 35J47
Mots clés : Quasiconformal maps, distortion, dilation, aronsson PDE, vector-valued calculus of variations inL, ∞-Harmonic maps
Katzourakis, Nikos 1

1 Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, RG6 6AX, UK and BCAM, Alameda de Mazarredo 14, 48009 Bilbao, Spain.
@article{COCV_2015__21_2_561_0,
     author = {Katzourakis, Nikos},
     title = {Optimal $\infty{}${-Quasiconformal} {Immersions}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {561--582},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014038},
     zbl = {1317.30029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014038/}
}
TY  - JOUR
AU  - Katzourakis, Nikos
TI  - Optimal $\infty{}$-Quasiconformal Immersions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 561
EP  - 582
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014038/
DO  - 10.1051/cocv/2014038
LA  - en
ID  - COCV_2015__21_2_561_0
ER  - 
%0 Journal Article
%A Katzourakis, Nikos
%T Optimal $\infty{}$-Quasiconformal Immersions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 561-582
%V 21
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014038/
%R 10.1051/cocv/2014038
%G en
%F COCV_2015__21_2_561_0
Katzourakis, Nikos. Optimal $\infty{}$-Quasiconformal Immersions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 561-582. doi : 10.1051/cocv/2014038. http://www.numdam.org/articles/10.1051/cocv/2014038/

L.V. Ahlfors, On quasiconformal mappings. J. Anal. Math. 3 (1954) 1-58; J. Anal. Math. 3 (1954) 207–208. | Zbl

L.V. Ahlfors, Quasiconformal deformations and mappings in R n . J. Anal. Math. 30 (1976) 74–97. | DOI | Zbl

G. Aronsson, Extension of functions satisfying Lipschitz conditions. Arkiv für Mat. 6 (1967) 551–561. | DOI | Zbl

G. Aronsson, On the partial differential equation u x 2 u xx +2u x u y u xy +u y 2 u yy =0. Arkiv für Mat. 7 (1968) 395–425. | Zbl

K. Astala, T. Iwaniec and G.J. Martin, Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195 (2010) 899–921. | DOI | Zbl

K. Astala, T. Iwaniec, G.J. Martin and J. Onninen, Extremal mappings of finite distortion. Proc. London Math. Soc. 91 (2005) 655–702. | DOI | Zbl

L. Bers, Quasiconformal mappings and Teichmuüllers theorem. Analytic Functions. Princeton Univ. Press, Princeton, NJ (1960) 89–119. | Zbl

L. Capogna and A. Raich, An Aronsson type approach to extremal quasiconformal mappings. J. Differ. Eqs. 253 (2012) 851–877. | DOI | Zbl

M.G. Crandall, A visit with the -Laplacian. in Calculus of Variations and Non-Linear Partial Differential Equations. In vol. 1927 of Springer Lect. Notes Math. CIME, Cetraro Italy (2005). | Zbl

F.W. Gehring, Quasiconformal mappings in Euclidean spaces, in vol. 2 of Handbook of complex analysis: geometric function theory. Elsevier, Amsterdam (2005) 1–29. | Zbl

R.S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values. Trans. Amer. Math. Soc. 138 (1969) 399−406. | DOI | Zbl

N. Katzourakis, L Variational Problems for Maps and the Aronsson PDE System. J. Differ. Eqs. 253 (2012) 2123–2139. | DOI | Zbl

N. Katzourakis, -Minimal Submanifolds. Proc. Amer. Math. Soc. 142 (2014) 2797–2811. | DOI | Zbl

N. Katzourakis, The Subelliptic -Laplace System on Carnot−Carathéodory Spaces. Adv. Nonlinear Anal. 2 (2013) 213–233. | DOI | Zbl

N. Katzourakis, Explicit -Harmonic Maps whose Interfaces have Junctions and Corners. C. R. Acad. Sci. Paris, Ser. I 351 (2013) 677–680. | DOI | Zbl

N. Katzourakis, Nonuniqueness in Vector-Valued Calculus of Variations in L and Some Linear Elliptic Systems, Commun. Pure Appl. Anal. 14 (2015) 313–327. | DOI | Zbl

N. Katzourakis, On the Structure of -Harmonic Maps, Commun. Partial Differ. Eqs. 39 (2014) 2091–2124. | DOI | Zbl

R. Narasimhan, Analysis on real nad complex manifolds. Advanced Stud. Pure Math. North-Holland, Masson and CIE, Paris (1968). | Zbl

S. Strebel, Extremal quasiconformal mappings. Results Math. 10 (1986) 168–210. | DOI | Zbl

O. Teichmüler, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940) 197. | JFM | Zbl

J. Väisälä, Lectures on n-dimensional quasiconformal mappings. Vol. 229 of Lect. Notes Math. Springer-Verlag, Berlin (1971). | Zbl

Cité par Sources :