Boundary effects and weak lower semicontinuity for signed integral functionals on BV
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 513-534.

We characterize lower semicontinuity of integral functionals with respect to weak convergence in BV, including integrands whose negative part has linear growth. In addition, we allow for sequences without a fixed trace at the boundary. In this case, both the integrand and the shape of the boundary play a key role. This is made precise in our newly found condition – quasi-sublinear growth from below at points of the boundary – which compensates for possible concentration effects generated by the sequence. Our work extends some recent results by Kristensen and Rindler [J. Kristensen and F. Rindler, Arch. Rat. Mech. Anal. 197 (2010) 539–598; J. Kristensen and F. Rindler, Calc. Var. 37 (2010) 29–62].

Reçu le :
DOI : 10.1051/cocv/2014036
Classification : 49J45, 26B30, 52A99
Mots clés : Lower semicontinuity, BV, quasiconvexity, free boundary
Benešová, Barbora 1 ; Krömer, Stefan 2 ; Kružík, Martin 3, 4

1 Department of Mathematics I, RWTH Aachen University, 52056 Aachen, Germany.
2 Math. Inst., Universität zu Köln, 50923 Köln, Germany.
3 Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 18208 Praha 8, Czech Republic.
4 Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 16629 Praha 6, Czech Republic.
@article{COCV_2015__21_2_513_0,
     author = {Bene\v{s}ov\'a, Barbora and Kr\"omer, Stefan and Kru\v{z}{\'\i}k, Martin},
     title = {Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {513--534},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014036},
     zbl = {1318.49022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014036/}
}
TY  - JOUR
AU  - Benešová, Barbora
AU  - Krömer, Stefan
AU  - Kružík, Martin
TI  - Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 513
EP  - 534
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014036/
DO  - 10.1051/cocv/2014036
LA  - en
ID  - COCV_2015__21_2_513_0
ER  - 
%0 Journal Article
%A Benešová, Barbora
%A Krömer, Stefan
%A Kružík, Martin
%T Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 513-534
%V 21
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014036/
%R 10.1051/cocv/2014036
%G en
%F COCV_2015__21_2_513_0
Benešová, Barbora; Krömer, Stefan; Kružík, Martin. Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 513-534. doi : 10.1051/cocv/2014036. http://www.numdam.org/articles/10.1051/cocv/2014036/

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145. | DOI | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford, 2000. | Zbl

M. Baía, M. Chermisi, J. Matias and P.M. Santos, Lower semicontinuity and relaxation of signed functionals with linear growth in the context of 𝒜-quasiconvexity. Calc. Var. Partial Differ. Equ. 47 (2013) 465–498. | DOI | Zbl

J.M. Ball and J.E. Marsden, Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86 (1984) 251–277. | DOI | Zbl

L. Beck and T. Schmidt, On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674 (2013) 113–194. | Zbl

I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L 1 . SIAM J. Math. Anal. 23 (1992) 1081–1098. | DOI | Zbl

I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,R N ) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. | DOI | Zbl

I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. | DOI | Zbl

A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. | Numdam | Zbl

A. Kałamajska, S. Krömer and M. Kružík, Sequential weak continuity of null lagrangians at the boundary. Calc. Var. Partial Differ. Equ. 49 (2014) 1263–1278. | DOI | Zbl

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in W 1,1 and BV. Arch. Ration. Mech. Anal. 197 (2010) 539–598. | DOI | Zbl

J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mat-report 1994-34, Math. Institute, Technical University of Denmark, 1994.

J. Kristensen and F. Rindler, Relaxation of signed integral functionals in BV. Calc. Var. Partial Differ. Equ. 37 (2010) 29–62. | DOI | Zbl

S. Krömer and M. Kružík, Oscillations and concentrations in sequences of gradients up to the boundary. J. Convex Anal. 20 (2013) 723–752. | Zbl

Stefan Krömer, On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var. 3 (2010) 387–408. | Zbl

M. Kružík, Quasiconvexity at the boundary and concentration effects generated by gradients. ESAIM: COCV 19 (2013) 679–700. | Numdam | Zbl

A. Mielke and P. Sprenger, Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elasticity 51 (1998) 23–41. | DOI | Zbl

C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952) 25–53. | DOI | Zbl

F. Rindler and G. Shaw, Strictly continuous extensions and convex lower semicontinuity of functionals with linear growth. Preprint arXiv:1312.4554v2 [math.AP] (2013).

P. Sprenger, Quasikonvexität am Rande und Null-Lagrange-Funktionen in der nichtkonvexen Variationsrechnung. Ph.D. thesis, Universität Hannover (1996). | Zbl

Cité par Sources :