On the two dimensional sphere, we consider axisymmetric critical points of an isoperimetric problem perturbed by a long-range interaction term. When the parameter controlling the nonlocal term is sufficiently large, we prove the existence of a local minimizer with arbitrary many interfaces in the axisymmetric class of admissible functions. These local minimizers in this restricted class are shown to be critical points in the broader sense (i.e., with respect to all perturbations). We then explore the rigidity, due to curvature effects, in the criticality condition via several quantitative results regarding the axisymmetric critical points.
DOI : 10.1051/cocv/2014031
Mots clés : Nonlocal isoperimetric problem, sphere, axisymmetric critical points, self-assembly of diblock copolymers
@article{COCV_2015__21_1_247_0, author = {Choksi, Rustum and Topaloglu, Ihsan and Tsogtgerel, Gantumur}, title = {Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {247--270}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014031}, zbl = {1319.35307}, mrnumber = {3348422}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014031/} }
TY - JOUR AU - Choksi, Rustum AU - Topaloglu, Ihsan AU - Tsogtgerel, Gantumur TI - Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 247 EP - 270 VL - 21 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014031/ DO - 10.1051/cocv/2014031 LA - en ID - COCV_2015__21_1_247_0 ER -
%0 Journal Article %A Choksi, Rustum %A Topaloglu, Ihsan %A Tsogtgerel, Gantumur %T Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 247-270 %V 21 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014031/ %R 10.1051/cocv/2014031 %G en %F COCV_2015__21_1_247_0
Choksi, Rustum; Topaloglu, Ihsan; Tsogtgerel, Gantumur. Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 247-270. doi : 10.1051/cocv/2014031. http://www.numdam.org/articles/10.1051/cocv/2014031/
Uniform energy distribution for minimizers of an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22 (2009) 569–605. | DOI | MR | Zbl
, and ,A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54 (2001) 761–825. | DOI | MR | Zbl
and ,Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013) 515–557. | DOI | MR | Zbl
, and ,V. Bögelein, F. Duzaar and N. Fusco, A quantitative isoperimetric inequality on the sphere. Preprint (2014). | MR
Self-consistent field theory simulations of block copolymers assembly on a sphere. Phys. Rev. E 75 (2007) 031802. | DOI
, , , , , and ,Small volume fraction limit of the diblock copolymer problem I: Sharp interface functional. SIAM J. Math. Anal. 42 (2010) 1334–1370. | DOI | MR | Zbl
and ,Small volume fraction limit of the diblock copolymer problem II: Diffuse interface functional. SIAM J. Math. Anal. 43 (2011) 739–763. | DOI | MR | Zbl
and ,On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611 (2005) 75–108. | MR | Zbl
and ,Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66 (2013) 1298–1333. | DOI | MR | Zbl
and ,M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, New Jersey (1976). | MR | Zbl
Grain Boundary Scars on Spherical Crystals. Langmuir 21 (2005) 12076–12079. | DOI
,Assembly and Analysis of Conical Models for the HIV-1 Core. Science 80 (1999) 80–83. | DOI
, et. al.,The role of Gauss curvature in a membrane phase separation problem. Physica D 240 (2011) 1913–1927. | DOI | MR | Zbl
, and ,The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. I. Droplet density. Arch. Rat. Mech. Anal. 210 (2013) 581–613. | DOI | MR | Zbl
, and ,The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy. Arch. Rat. Mech. Anal. 212 (2014) 445–501. | DOI | MR | Zbl
, and ,Budding of crystalline domains in fluid membranes. Phys. Rev. E 68 (2003) 061905. | DOI
, and ,The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature. Trans. Amer. Math. Soc. 352 (2000) 4889–4909. | DOI | MR | Zbl
, and ,Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46 (2014) 2033–2051. | DOI | MR | Zbl
and ,Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Equ. 1 (1993) 169–204. | DOI | MR | Zbl
,Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299 (2010) 45–87. | DOI | MR | Zbl
,Equilibrium morphology of block copolymer melts. Macromolecules 19 (1986) 2621–2632. | DOI
and ,Stripe patterns in a model for block copolymers. Math. Model. Meth. Appl. Sci. 20 (2010) 843–907. | DOI | MR | Zbl
and ,On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193–238. | DOI | MR | Zbl
and ,On the spectra of three dimensional lamellar solutions of the diblock copolymer problem. SIAM J. Math. Anal. 35 (2003) 1–32. | DOI | MR | Zbl
and ,Oval shaped droplet solutions in the saturation process of some pattern formation problems. SIAM J. Math. Anal. 70 (2009) 1120–1138. | DOI | MR | Zbl
and ,Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9 (2001) 1093–1138. | DOI | MR | Zbl
,Uniform energy and density distribution: diblock copolymers’ functional. Interfaces Free Bound. 11 (2009) 447–474. | DOI | MR | Zbl
,On the global minimizers of a nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13 (2011) 155–169. | DOI | MR | Zbl
and ,Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method. Phys. Rev. E 72 (2005) 016710. | DOI
, , and ,On a nonlocal isoperimetric problem on the two-sphere. Commun. Pure Appl. Anal. 12 (2013) 597–620. | DOI | MR | Zbl
,Turing patterns on a sphere. Phys. Rev. E 60 (1999) 4588–4592. | DOI
, and ,Structure of stable solutions of a one-dimensional variational problem. ESAIM: COCV 12 (2006) 721–751. | Numdam | MR | Zbl
,Cité par Sources :