The Norm Optimal Control Problem for Stochastic Linear Control Systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 399-413.

In this paper we are concerned with two norm optimal control problems for different stochastic linear control systems. One is for approximately controllable systems with the natural filtration, while another is for exactly controllable systems with a general filtration. For each aforementioned norm optimal control problem, we construct the unique norm optimal control, through building up some suitable quadratic functional and making use of a variational characterization on its minimizer.

Reçu le :
DOI : 10.1051/cocv/2014030
Classification : 93E20, 93C05
Mots clés : Norm optimal control, stochastic linear control systems, controllability, filtration
Wang, Yanqing 1 ; Zhang, Can 2

1 School of Mathematics and Statistics, Southwest University, Chongqing 400715, P.R. China.
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R. China.
@article{COCV_2015__21_2_399_0,
     author = {Wang, Yanqing and Zhang, Can},
     title = {The {Norm} {Optimal} {Control} {Problem} for {Stochastic} {Linear} {Control} {Systems}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {399--413},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014030},
     mrnumber = {3348405},
     zbl = {1311.93089},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014030/}
}
TY  - JOUR
AU  - Wang, Yanqing
AU  - Zhang, Can
TI  - The Norm Optimal Control Problem for Stochastic Linear Control Systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 399
EP  - 413
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014030/
DO  - 10.1051/cocv/2014030
LA  - en
ID  - COCV_2015__21_2_399_0
ER  - 
%0 Journal Article
%A Wang, Yanqing
%A Zhang, Can
%T The Norm Optimal Control Problem for Stochastic Linear Control Systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 399-413
%V 21
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014030/
%R 10.1051/cocv/2014030
%G en
%F COCV_2015__21_2_399_0
Wang, Yanqing; Zhang, Can. The Norm Optimal Control Problem for Stochastic Linear Control Systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 399-413. doi : 10.1051/cocv/2014030. http://www.numdam.org/articles/10.1051/cocv/2014030/

R. Buckdahn, M. Quincampoix and G. Tessitore, A characterization of approximately controllable linear stochastic differential equations, in Stoch. Partial Differ. Equ. Appl., edited by G. Da Prato and L. Tubaro. Chapman & Hall, Boca Raton (2006) 253–260. | MR | Zbl

M. Ehrhardt and W. Kliemann, Controllability of linear stochastic systems. Syst. Control Lett. 2 (1982) 145–153. | DOI | MR | Zbl

N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

H.O. Fattorini, Infinite Dimensional Linear Control Systems, The Time Optimal and Norm Optimal Problems. Elsevier, Amsterdam (2005). | MR | Zbl

D. Goreac, A Kalman-type condition for stochastic approximate controllability. C.R. Math. Acad. Sci. Paris 346 (2008), 183-188. | DOI | MR | Zbl

D. Goreac, A note on the controllability of jump diffusions with linear coefficients. IMA J. Math. Control Inform. 29 (2012) 427–435. | DOI | MR | Zbl

S. Ji and X.Y. Zhou, A maximum principle for stochastic optimal control with terminal state constraints, and its applications. Commun. Inform. Syst. 6 (2006) 321–337. | MR | Zbl

A.E.B. Lim and X.Y. Zhou, Stochastic optimal LQR control with integral quadratic constraints and indefinite control weights. IEEE Trans. Automat. Control. 44 (1999) 1359–1369. | DOI | MR | Zbl

Q. Lü and X. Zhang, Well-posedness of backward stochastic differential equations with general filtration. J. Differ. Equ. 254 (2013) 3200–3227. | DOI | MR | Zbl

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. | DOI | MR | Zbl

S. Peng, Backward stochastic differential equation and exact controllability of stochastic control systems. Prog. Nat. Sci. 4 (1994) 274–284. | MR

S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994) 1447–1475. | DOI | MR | Zbl

G. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for heat equations. SIAM J. Control Optim. 50 (2012), 2938-2958. | DOI | MR | Zbl

Y. Wang, BSDEs with general filtration driven by Lévy processes, and an application in stochastic controllability. Syst. Control Lett. 62 (2013) 242–247. | DOI | MR | Zbl

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999). | MR | Zbl

J. Zabczyk, Controllability of stochastic linear systems. Syst. Control Lett. 1 (1981) 25–31. | DOI | MR | Zbl

E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in vol. 3, Handb. Differ. Equ.: Evol. Differ. Equ. Elsevier Science, New York (2006) 527–621. | MR | Zbl

Cité par Sources :