On the Faber–Krahn inequality for the Dirichlet p-Laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72.

A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem.

Reçu le :
DOI : 10.1051/cocv/2014017
Classification : 35B06, 35B51, 35J92, 35P30, 49Q20
Mots clés : Symmetry, moving plane method, comparison principles, boundary point lemma
Chorwadwala, Anisa M.H. 1 ; Mahadevan, Rajesh 2 ; Toledo, Francisco 2

1 Indian Institute of Science Education and Research, Pune, India.
2 Departamento de Matemática, Univ. de Concepción, Concepción, Chile.
@article{COCV_2015__21_1_60_0,
     author = {Chorwadwala, Anisa M.H. and Mahadevan, Rajesh and Toledo, Francisco},
     title = {On the {Faber{\textendash}Krahn} inequality for the {Dirichlet} $p${-Laplacian}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {60--72},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {1},
     year = {2015},
     doi = {10.1051/cocv/2014017},
     zbl = {1319.35145},
     mrnumber = {3348415},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014017/}
}
TY  - JOUR
AU  - Chorwadwala, Anisa M.H.
AU  - Mahadevan, Rajesh
AU  - Toledo, Francisco
TI  - On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 60
EP  - 72
VL  - 21
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014017/
DO  - 10.1051/cocv/2014017
LA  - en
ID  - COCV_2015__21_1_60_0
ER  - 
%0 Journal Article
%A Chorwadwala, Anisa M.H.
%A Mahadevan, Rajesh
%A Toledo, Francisco
%T On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 60-72
%V 21
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014017/
%R 10.1051/cocv/2014017
%G en
%F COCV_2015__21_1_60_0
Chorwadwala, Anisa M.H.; Mahadevan, Rajesh; Toledo, Francisco. On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72. doi : 10.1051/cocv/2014017. http://www.numdam.org/articles/10.1051/cocv/2014017/

A.D. Aleksandrov, Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. 13 (1958) 5–8. | MR

A. Alvino, V. Ferone, and G. Trombetti, On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29 (1998) 437–451. | DOI | MR | Zbl

G. Barles, Remark on uniqueness results of the first eigenvalue of the p-Laplacian. In vol. 384 of Annales de la faculté des sciences de Toulouse (1988) 65–75. | Numdam | MR | Zbl

H. Berestycki and L. Nirenberg, On the moving plane method and the sliding method. Boll. Soc. Brasiliera Mat. Nova Ser. 22 (1991) 1–37. | DOI | MR | Zbl

T. Bhattacharya, A proof of the Faber Krahn inequality for the first eigenvalue of the p-Laplacian. Ann. Mat. Pura Appl. Ser. 177 (1999) 225–231. | DOI | MR | Zbl

J. Brothers, and W. Ziemer, Minimal rearrangements of Sobolev functions. Journal fur die reine und angewandle Mathematik 384 (1988) 153–179. | MR | Zbl

R. Courant, Beweis des Satzes, dass von allen homogenen Membranen gegebenen Umfantes und gegebener Spannung die kreisfrmige den tiefsten Grundton besizt. Math. Z. 3 (1918) 321–28. | DOI | JFM | MR

M. Cuesta and P. Takác, A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Eq. 13 (2000) 721–746. | MR | Zbl

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 493–516. | DOI | Numdam | MR | Zbl

L. Damascelli and F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications. Adv. Differ. Equ. 5 (2000) 1179–1200. | MR | Zbl

G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172. | JFM

I. Fragalà, F. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Zeit. 254 (2006) 117–132. | DOI | MR | Zbl

A. Farina and B. Kawohl, Remarks on an overdetermined problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. | DOI | MR | Zbl

E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100. | DOI | JFM | MR

P. Lindqvist, On a nonlinear eigenvalue problem, Department of Mathematics. Norwegian University of Sciencie and technology N-7491, Trondheim, Norway. | MR | Zbl

H. Lou, On singular sets of solutions to p-Laplace equations. Chinese Ann. Math. 29 521–530 (2008). | DOI | MR | Zbl

J. García Melián and S. De Lis, On the perturbation of eigenvalues for the p-Laplacian. C.R. Acad. Sci. Paris 332 (2001) 893–898. | MR | Zbl

M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall (1967). | MR | Zbl

S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic equations. Ann. Scuo. Normale Sup. di Pisa 14 (1987) 403–421. | Numdam | MR | Zbl

J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl

G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura. Appl. 120 (1979) 159–184. | DOI | MR | Zbl

P. Tolksdorff, On the Dirichlet Problem for quasilinear equations. Commun. Partial Differ. Eq. 8 (1983) 773–817. | MR | Zbl

Cité par Sources :