Hölder equivalence of the value function for control-affine systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1224-1248.

We prove the continuity and the Hölder equivalence w.r.t. an Euclidean distance of the value function associated with the L1 cost of the control-affine system = f0(q) + ∑j=1m uj fj(q), satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as the Ball-Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction of the control-affine system to a linear but time-dependent one, for which we are able to define a generalization of the nilpotent approximation and through which we derive estimates for the shape of the reachable sets. Finally, we also prove the continuity of the value function associated with the L1 cost of time-dependent systems of the form q̇ = ∑j=1m uj fjt(q).

DOI : 10.1051/cocv/2014014
Classification : 53C17, 53C17
Mots clés : control-affine systems, time-dependent systems, sub-riemannian geometry, value function, Ball-Box theorem, nilpotent approximation
@article{COCV_2014__20_4_1224_0,
     author = {Prandi, Dario},
     title = {H\"older equivalence of the value function for control-affine systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1224--1248},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014014},
     mrnumber = {3264241},
     zbl = {1301.53029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014014/}
}
TY  - JOUR
AU  - Prandi, Dario
TI  - Hölder equivalence of the value function for control-affine systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 1224
EP  - 1248
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014014/
DO  - 10.1051/cocv/2014014
LA  - en
ID  - COCV_2014__20_4_1224_0
ER  - 
%0 Journal Article
%A Prandi, Dario
%T Hölder equivalence of the value function for control-affine systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 1224-1248
%V 20
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014014/
%R 10.1051/cocv/2014014
%G en
%F COCV_2014__20_4_1224_0
Prandi, Dario. Hölder equivalence of the value function for control-affine systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1224-1248. doi : 10.1051/cocv/2014014. http://www.numdam.org/articles/10.1051/cocv/2014014/

[1] A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). http://people.sissa.it/agrachev/agrachev˙files/notes.htm (2012).

[2] A. Agrachev, U. Boscain, J.-P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655. | MR | Zbl

[3] A. Agrachev and P.W.Y. Lee, Continuity of optimal control costs and its application to weak KAM theory. Calc. Var. Partial Differ. Equ. 39 (2010) 213-232. | MR | Zbl

[4] A.A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 793-807. | Numdam | MR | Zbl

[5] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization II. Vol. 87 of Encycl. Math. Sci. Springer-Verlag, Berlin (2004). | MR | Zbl

[6] A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20 (2008) 801-822. | MR | Zbl

[7] M. Barbero-Liñán and M. Sigalotti, High-order sufficient conditions for configuration tracking of affine connection control systems. Syst. Control Lett. 59 (2010) 491-503. | MR | Zbl

[8] A. Bellaïche, The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry. Vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 1-78. | MR | Zbl

[9] R.M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory. SIAM J. Control Optim. 28 (1990) 903-924. | MR | Zbl

[10] R.M. Bianchini and G. Stefani. Time-optimal problem and time-optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48 (1992) 401-429 (1990). | MR | Zbl

[11] U. Boscain and P. Mason, Time minimal trajectories for a spin 1 / 2 particle in a magnetic field. J. Math. Phys. 47 (2006) 062101, 29. | MR | Zbl

[12] U. Boscain and G. Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM: COCV 10 (2004) 593-614. | Numdam | MR | Zbl

[13] U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin, and H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. | MR | Zbl

[14] F. Bullo and A. D. Lewis, Geometric control of mechanical systems. Modeling, analysis, and design for simple mechanical control systems. Vol. 49 of Texts Appl. Math. Springer-Verlag, New York (2005). | MR | Zbl

[15] Y. Chitour, F. Jean and E. Trélat, Singular trajectories of control-affine systems. SIAM J. Control Optim. 47 (2008) 1078-1095. | MR | Zbl

[16] J.-M. Coron, Control and nonlinearity. Vol. 136 of Math. Surv. Monogr. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[17] D. D'Alessandro, Introduction to quantum control and dynamics. Chapman & Hall/CRC Appl. Math. Nonl. Sci. Series. Chapman & Hall/CRC, Boca Raton, FL (2008). | MR | Zbl

[18] D. D'Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001) 866-876. | MR | Zbl

[19] L.D. Drager, J.M. Lee, E. Park and K. Richardson, Smooth distributions are finitely generated. Ann. Global Anal. Geom. 41 (2012) 357-369. | MR | Zbl

[20] G.B. Folland and E.M. Stein, Estimates for the | MR | Zbl

[21] H. Frankowska, Value function in optimal control, in Mathematical control theory, Part 1, 2 (Trieste, 2001), vol. 8 of ICTP Lect. Notes. Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 516-653 (electronic). | MR | Zbl

[22] J.-P. Gauthier and V. Zakalyukin, On the codimension one motion planning problem. J. Dyn. Control Syst. 11 (2005) 73-89. | MR | Zbl

[23] J.-P. Gauthier and V. Zakalyukin, On the motion planning problem, complexity, entropy, and nonholonomic interpolation. J. Dyn. Control Syst. 12 (2006) 371-404. | MR | Zbl

[24] H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991) 238-264. | MR | Zbl

[25] F. Jean, Complexity of nonholonomic motion planning. Int. J. Control 74 (2001) 776-782. | MR | Zbl

[26] F. Jean, Uniform estimation of sub-Riemannian balls. J. Dynam. Control Systems 7 (2001) 473-500. | MR | Zbl

[27] F. Jean, Entropy and complexity of a path in sub-Riemannian geometry. ESAIM: COCV 9 (2003) 485-508. | Numdam | MR | Zbl

[28] D. Jerison and A. Sánchez-Calle, Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md., 1985-86). Vol. 1277 of Lect. Notes Math. Springer, Berlin (1987) 46-77. | MR | Zbl

[29] V. Jurdjevic, Geometric control theory. Vol. 52 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge (1997). | MR | Zbl

[30] J. Mitchell, On Carnot−Carathéodory metrics. J. Differ. Geom. 21 35-45, 1985. | MR | Zbl

[31] C. Romero-Meléndez, J.P. Gauthier and F. Monroy-Pérez, On complexity and motion planning for co-rank one sub-Riemannian metrics. ESAIM: COCV 10 (2004) 634-655. | Numdam | MR | Zbl

[32] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976) 247-320. | MR | Zbl

[33] J. San Martín, T. Takahashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms. Quart. Appl. Math. 65 (2007) 405-424. | MR | Zbl

[34] H.J. Sussmann, Some properties of vector field systems that are not altered by small perturbations. J. Differ. Equ. 20 (1976) 292-315. | MR | Zbl

[35] H.J. Sussmann, Some recent results on the regularity of optimal cost functions, in Proc. of the Berkeley-Ames conference on nonlinear problems in control and fluid dynamics (Berkeley, Calif. (1983)), Lie Groups: Hist., Frontiers and Appl. Ser. B: Systems Inform. Control, II. Math Sci Press. Brookline, MA (1984) 429-434. | MR | Zbl

[36] H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-194. | MR | Zbl

[37] H.J. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane. SIAM J. Control Optim. 25 (1987) 1145-1162. | MR | Zbl

[38] E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Systems 6 (2000) 511-541. | MR | Zbl

Cité par Sources :