Homogenization of systems with equi-integrable coefficients
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1214-1223.

In this paper we prove a H-convergence type result for the homogenization of systems the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability condition. The equi-integrability assumption allows us to control the fact that the coefficients are not equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued systems, we present an alternative approach based on an approximation result by Lipschitz functions due to Acerbi and Fusco combined with a Meyers Lp-estimate adapted to the functional ellipticity condition. The present framework includes in particular the elasticity case and the reinforcement by stiff thin fibers.

DOI : 10.1051/cocv/2014013
Classification : 35B27, 49K20
Mots clés : homogenization, vector-valued systems, not equi-bounded coefficients, equi-integrable coefficients, H-convergence
@article{COCV_2014__20_4_1214_0,
     author = {Briane, Marc and Casado-D{\'\i}az, Juan},
     title = {Homogenization of systems with equi-integrable coefficients},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1214--1223},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014013},
     mrnumber = {3264240},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014013/}
}
TY  - JOUR
AU  - Briane, Marc
AU  - Casado-Díaz, Juan
TI  - Homogenization of systems with equi-integrable coefficients
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 1214
EP  - 1223
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014013/
DO  - 10.1051/cocv/2014013
LA  - en
ID  - COCV_2014__20_4_1214_0
ER  - 
%0 Journal Article
%A Briane, Marc
%A Casado-Díaz, Juan
%T Homogenization of systems with equi-integrable coefficients
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 1214-1223
%V 20
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014013/
%R 10.1051/cocv/2014013
%G en
%F COCV_2014__20_4_1214_0
Briane, Marc; Casado-Díaz, Juan. Homogenization of systems with equi-integrable coefficients. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1214-1223. doi : 10.1051/cocv/2014013. http://www.numdam.org/articles/10.1051/cocv/2014013/

[1] E. Acerbi and N. Fusco, An approximation lemma for W1, p functions, Material instabilities in continuum mechanics (Edinburgh, 1985-1986). Oxford Sci. Publ., Oxford Univ. Press, New York (1988) 1-5. | MR | Zbl

[2] E. Acerbi and N. Fusco, “A regularity theorem for minimizers of quasiconvex integrals”. Arch. Rational Mech. Anal. 99 (1987) 261-281. | MR | Zbl

[3] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 407-436. | Numdam | MR | Zbl

[4] M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects. J. Math. Pures Appl. 84 (2005) 55-96. | MR | Zbl

[5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence (2011). | MR | Zbl

[6] A. Beurling and J. Deny, Espaces de Dirichlet. Acta Math. 99 (1958) 203-224. | MR | Zbl

[7] A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002). | MR | Zbl

[8] A. Braides, M. Briane, and J. Casado-Díaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two. Nonlinearity 22 (2009) 1459-1480. | MR | Zbl

[9] M. Briane, Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers. SIAM J. Math. Anal. 35 (2003) 33-60. | MR | Zbl

[10] M. Briane and M. Camar-Eddine, Homogenization of two-dimensional elasticity problems with very stiff coefficients. J. Math. Pures Appl. 88 (2007) 483-505. | MR | Zbl

[11] M. Briane and M. Camar-Eddine, An optimal condition of compactness for elasticity problems involving one directional reinforcement. J. Elasticity 107 (2012) 11-38. | MR

[12] M. Briane and J. Casado-Díaz, Asymptotic behavior of equicoercive diffusion energies in two dimension. Calc. Var. Partial Differ. Equ. 29 (2007) 455-479. | MR | Zbl

[13] M. Briane and J. Casado-Díaz, Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. Partial Differ. Equ. 33 (2008) 463-492. | MR | Zbl

[14] M. Briane and J. Casado-Díaz, A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian. In preparation.

[15] M. Briane and N. Tchou, Fibered microstructures for some nonlocal Dirichlet forms. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001) 681-711. | Numdam | MR | Zbl

[16] M. Camar-Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12 (2002) 1153-1176. | MR | Zbl

[17] M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170 (2003) 211-245. | MR | Zbl

[18] L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. | MR | Zbl

[19] G. Dal Maso, An introduction to Γ-convergence. Progr. Nonlin. Differ. Equ. Birkhaüser, Boston (1993). | MR | Zbl

[20] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat. Appl. 8 (1975) 277-294. | MR | Zbl

[21] E. De Giorgi, Γ-convergenza e G-convergenza. Boll. Un. Mat. Ital. 14-A (1977) 213-220. | Zbl

[22] N. Dunford and J.T. Schwartz, Linear operators. Part I. General theory. Wiley-Interscience Publication, New York (1988). | MR | Zbl

[23] V.N. Fenchenko and E.Ya. Khruslov, Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness. Dokl. AN Ukr. SSR 4 (1981). | Zbl

[24] E.Ya. Khruslov, Homogenized models of composite media, Composite Media and Homogenization Theory, edited by G. Dal Maso and G.F. Dell'Antonio, in Progr. Nonlin. Differ. Equ. Appl. Birkhaüser (1991) 159-182. | MR | Zbl

[25] E.Ya. Khruslov and V.A. Marchenko, Homogenization of Partial Differential Equations, vol. 46. Progr. Math. Phys. Birkhäuser, Boston (2006). | MR | Zbl

[26] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1963) 189-206. | Numdam | MR | Zbl

[27] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Func. Anal. 123 (1994) 368-421. | MR | Zbl

[28] F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique, 1977-78, Université d'Alger, multicopied, 34 pp. English translation: F. Murat and L. Tartar, H-convergence. Topics in the Mathematical Modelling of Composite Materials, edited by L. Cherkaev and R.V. Kohn, vol. 31. Progr. Nonlin. Differ. Equ. Appl. Birkaüser, Boston (1998) 21-43. | Zbl

[29] C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9 (1997) 241-257. | MR | Zbl

[30] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571-597. | Numdam | MR | Zbl

[31] L. Tartar, The General Theory of Homogenization: A Personalized Introduction. Lect. Notes Unione Matematica Italiana. Springer-Verlag, Berlin, Heidelberg (2009). | MR | Zbl

Cité par Sources :