We show that we can reconstruct two coefficients of a wave equation by a single boundary measurement of the solution. The identification and reconstruction are based on Krein's inverse spectral theory for the first coefficient and on the Gelfand-Levitan theory for the second. To do so we use spectral estimation to extract the first spectrum and then interpolation to map the second one. The control of the solution is also studied.
Mots-clés : inverse spectral methods, Krein string, Gelfand-levitan theory
@article{COCV_2014__20_4_1203_0, author = {Boumenir, Amin}, title = {Identification of a wave equation generated by a string}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1203--1213}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014012}, mrnumber = {3264239}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014012/} }
TY - JOUR AU - Boumenir, Amin TI - Identification of a wave equation generated by a string JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1203 EP - 1213 VL - 20 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014012/ DO - 10.1051/cocv/2014012 LA - en ID - COCV_2014__20_4_1203_0 ER -
%0 Journal Article %A Boumenir, Amin %T Identification of a wave equation generated by a string %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1203-1213 %V 20 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014012/ %R 10.1051/cocv/2014012 %G en %F COCV_2014__20_4_1203_0
Boumenir, Amin. Identification of a wave equation generated by a string. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1203-1213. doi : 10.1051/cocv/2014012. http://www.numdam.org/articles/10.1051/cocv/2014012/
[1] Algorithms for solving inverse eigenvalue problems for Sturm−Liouville equations, Inverse Methods in Action edited by P.C. Sabatier. Springer-Verlag (1990) 138-145. | MR | Zbl
,[2] F. Al-musallam and A. Boumenir, Identification and control of a heat equation. Int. J. Evolution Equations 6 (2013) 85-100. | MR
[3] Boundary control approach to the spectral estimation problem: the case of multiple poles. Math. Control Signals Systems 22 (2011) 245-265. | MR | Zbl
and ,[4] Spectral estimation and inverse initial boundary value problems. Vol. 4 of Inverse Probl. Imaging (2010) 1-9. | MR | Zbl
, and ,[5] Iterative solution of the inverse Sturm−Liouville problem. J. Math. Phys. 15 (1974) 429-436. | MR | Zbl
,[6] The recovery of analytic potentials. Inverse Probl. 15 (1999) 1405-1423. | MR | Zbl
,[7] The reconstruction of an analytic string from two spectra. Inverse Probl. 20 (2004) 833-846. | MR | Zbl
,[8] Computing Eigenvalues of periodic Sturm−Liouville problems by the Shannon-Whittaker sampling theorem. Math. Comput. 68 (1999) 1057-1066. | MR | Zbl
,[9] Recovery of the heat coefficient by two measurements. Inverse Probl. Imaging 5 (2011) 775-791 | MR | Zbl
and ,[10] An inverse problem for the wave equation. J. Inverse Ill-Posed Probl. 19 (2011) 573-592. | MR | Zbl
and ,[11] Sampling with a String. J. Fourier Anal. Appl. 8 (2002) 211-232. | MR | Zbl
and ,[12] Toward a general theory of transmutation. Nonlin. Anal. 26 (1996) 1923-1936. | MR | Zbl
and ,[13] On the complete recovery of geophysical data. Math. Methods Appl. Sci. 4 (1982) 33-73. | MR | Zbl
, ,[14] Gaussian processes, function theory, and the inverse spectral problem. Vol. 31 of Probab. Math. Stat. Academic Press, New York, London (1976). | MR | Zbl
and ,[15] Inverse Problems in Vibration, series: Solid Mechanics and Its Applications, 2nd edition. Springer (2004). | MR | Zbl
,[16] The inverse Sturm−Liouville problem with symmetric potentials. Acta Math. 141 (1978) 263-291. | MR | Zbl
,[17] Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357-1391. | MR | Zbl
and ,[18] Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems, Series: Inverse and Ill-Posed Problems Series. De Gruyter 48 (2005). | MR | Zbl
, and ,[19] On the spectral functions of the String. Amer. Math. Soc. Transl. 103 (1974) 19-102. | Zbl
and ,[20] Fourier Series in Control Theory. Springer Monogr. Math. Springer (2005) | MR | Zbl
and ,[21] An extension of Krein's inverse spectral theorem to strings with non-reflecting left boundaries. Lect. Notes Math. 1485 (1991) 354-373. | Numdam | Zbl
,[22] Determination of a differential equation by two spectra. Russian Math. Surv. 19 (1964) 3-63. | MR | Zbl
and ,[23] Stability theorems for two inverse spectral problems. Inverse Probl. 4 (1988) 529-540. | MR | Zbl
,[24] Sturm−Liouville Operators and Applications. Oper. Theory Adv. Appl., vol. 22. Birkhäuser, Basel (1986). | MR | Zbl
,[25] Optimal Observation of the One-dimensional Wave Equation. J. Fourier Anal. Appl. 19 (2013) 514-544. | MR
, and ,[26] Reconstruction techniques for classical inverse Sturm−Liouville problem. Math. Comput. 58 (1992) 161-183. | MR | Zbl
and ,[27] The ‘window problem' for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000) 233-254. | MR | Zbl
, and ,[28] On the one-dimensional Gelfand and Borg−Levinson spectral problems for discontinuous coefficients. Inverse Probl. 20 (2004) 1371-1386. | MR | Zbl
,[29] Some uniqueness results of discontinuous coefficients for the one-dimensional inverse spectral problem. Inverse Probl. 19 (2003) 871-894. | MR | Zbl
,[30] Stieltjes Functions and Approximation Solutions of an Inverse Problem. Springer Lect. Notes Phys. 85 (1978) 123-33.
and ,[31] Equations of Mathematical Physics. Marcel Dekker, New York (1971). | Zbl
,[32] Advances in Shannon's Sampling Theory. CRC Press, Boca Raton, FL (1993). | MR | Zbl
,Cité par Sources :