We prove Hölder regularity of the gradient, up to the boundary for solutions of some fully-nonlinear, degenerate elliptic equations, with degeneracy coming from the gradient.
Mots clés : regularity, fully nonlinear equations, simplicity of the first nonlinear eigenvalue
@article{COCV_2014__20_4_1009_0, author = {Birindelli, I. and Demengel, F.}, title = {$\mathcal {C}^{1,\beta }$ regularity for {Dirichlet} problems associated to fully nonlinear degenerate elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1009--1024}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014005/} }
TY - JOUR AU - Birindelli, I. AU - Demengel, F. TI - $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1009 EP - 1024 VL - 20 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014005/ DO - 10.1051/cocv/2014005 LA - en ID - COCV_2014__20_4_1009_0 ER -
%0 Journal Article %A Birindelli, I. %A Demengel, F. %T $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1009-1024 %V 20 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014005/ %R 10.1051/cocv/2014005 %G en %F COCV_2014__20_4_1009_0
Birindelli, I.; Demengel, F. $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1009-1024. doi : 10.1051/cocv/2014005. http://www.numdam.org/articles/10.1051/cocv/2014005/
[1] Optimal gradient continuity for degenerate elliptic equations. Preprint arXiv:1206.4089.
, and ,[2] Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. 13 (2011) 1-26. | MR | Zbl
, and ,[3] Comparison principle and Liouville type results for singular fully nonlinear operators. Ann. Fac. Sci Toulouse Math. 13 (2004) 261-287. | Numdam | MR | Zbl
and ,[4] Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun. Pure Appl. Anal. 6 (2007) 335-366. | MR | Zbl
and ,[5] Regularity and uniqueness of the first eigenfunction for singular fully non linear operators. J. Differ. Eqs. 249 (2010) 1089-1110. | MR | Zbl
and ,[6] Regularity results for radial solutions of degenerate elliptic fully non linear equations. Nonlinear Anal. 75 (2012) 6237-6249. | MR | Zbl
and ,[7] Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0. Topological Meth. Nonlinear Anal. 6 (1995) 31-48. | MR | Zbl
and ,[8] Interior a Priori Estimates for Solutions of Fully Nonlinear Equations. Ann. Math. Second Ser. 130 (1989) 189-213. | MR | Zbl
,[9] Fully-nonlinear equations Colloquium Publications. Amer. Math. Soc. Providence, RI 43 (1995). | MR | Zbl
and ,[10] Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, and ,[11] Classical Solutions of Fully Nonlinear, Convex, Second-Order Elliptic Equations. Commun. Pure Appl. Math. 25 (1982) 333-363. | MR | Zbl
,[12] Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl
and ,[13] Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations. J. Differ. Eqs. 250 (2011) 1555-1574. | MR | Zbl
,[14] C1,α regularity of solutions of degenerate fully non-linear elliptic equations. Adv. Math. 233 (2013) 196-206. | MR | Zbl
and ,[15] Estimates on elliptic equations that hold only where the gradient is large. Preprint arxiv:1306.2429v2.
and ,[16] Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations. J. Differ. Eqs. 83 (1990) 26-78. | MR | Zbl
and ,[17] The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286-311. | MR | Zbl
,[18] Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Preprint arXiv:1306.6672v1. | MR
and ,[19] W2,p and W1,p-Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations. J. Anal. Appl. 28 (2009) 129-164. | MR | Zbl
,[20] On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. In Partial differential equations and the calculus of variations. II, vol. 2 of Progr. Nonlinear Differ. Eqs. Appl. Birkhauser Boston, Boston, MA (1989) 939-957. | MR | Zbl
,Cité par Sources :