Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 983-1008.

We characterize quasi-static rate-independent evolutions, by means of their graph parametrization, in terms of a couple of equations: the first gives stationarity while the second provides the energy balance. An abstract existence result is given for functionals ℱ of class C1 in reflexive separable Banach spaces. We provide a couple of constructive proofs of existence which share common features with the theory of minimizing movements for gradient flows. Moreover, considering a sequence of functionals ℱn and its Γ-limit ℱ we provide, under suitable assumptions, a convergence result for the associated quasi-static evolutions. Finally, we apply this approach to a phase field model in brittle fracture.

DOI : 10.1051/cocv/2014004
Classification : 49J27, 74R10, 58E30
Mots clés : quasi-static evolutions, phase-field
@article{COCV_2014__20_4_983_0,
     author = {Negri, Matteo},
     title = {Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {983--1008},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014004},
     mrnumber = {3264231},
     zbl = {1301.49017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014004/}
}
TY  - JOUR
AU  - Negri, Matteo
TI  - Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 983
EP  - 1008
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014004/
DO  - 10.1051/cocv/2014004
LA  - en
ID  - COCV_2014__20_4_983_0
ER  - 
%0 Journal Article
%A Negri, Matteo
%T Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 983-1008
%V 20
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014004/
%R 10.1051/cocv/2014004
%G en
%F COCV_2014__20_4_983_0
Negri, Matteo. Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 983-1008. doi : 10.1051/cocv/2014004. http://www.numdam.org/articles/10.1051/cocv/2014004/

[1] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191-246. | MR | Zbl

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lect. Math. ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl

[3] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR | Zbl

[4] J.-F. Babadjian and V. Millot, Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements (2012).

[5] B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. | MR | Zbl

[6] B. Bourdin, G.A. Francfort and J.-J. Marigo, The variational approach to fracture. J. Elasticity 91 (2008) 5-148. | MR | Zbl

[7] A. Braides, Γ-convergence for beginners. Oxford University Press, Oxford (2002). | MR | Zbl

[8] A. Braides, Local Minimization, Variational Evolution and Γ-convergence, vol. 2094 of Lect. Notes Math. Springer, Berlin (2013).

[9] A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal. 167 (2003) 211-233. | MR | Zbl

[10] A. Chambolle, G.A. Francfort and J.-J. Marigo, Revisiting Energy Release Rates in Brittle Fracture. J. Nonlinear Sci. 20 (2010) 395-424. | MR | Zbl

[11] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR | Zbl

[12] G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Methods Appl. Sci. 12 (2002) 1773-1799. | MR | Zbl

[13] G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101-135. | MR | Zbl

[14] G. Dal Maso and R. Toader, On a notion of unilateral slope for the Mumford-Shah functional. NoDEA Nonlin. Differ. Equ. Appl. 13 (2007) 713-734. | MR | Zbl

[15] E. De Giorgi, New problems on minimizing movements. In Boundary value problems for partial differential equations and applications. RMA Res. Notes Appl. Math. Masson, Paris (1993) 81-98. | MR | Zbl

[16] M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151-167. | MR | Zbl

[17] G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003) 1465-1500. | MR | Zbl

[18] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319-1342. | MR | Zbl

[19] A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22 (2005) 129-172. | MR | Zbl

[20] D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18 (2008) 1529-1569. | MR | Zbl

[21] D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model (2013). | MR | Zbl

[22] C.J. Larsen, Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630-654. | MR

[23] C.J. Larsen, C. Ortner and E. Süli, Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010) 1021-1048. | MR

[24] A. Mielke, Evolution of rate-independent systems, volume Evolutionary equations. Handb. Differ. Equ. Elsevier, Amsterdam (2005) 461-559. | MR | Zbl

[25] A. Mielke, Differential, energetic, and metric formulations for rate-independent processes. In Nonlinear PDE's and applications, vol. 2028 of Lecture Notes in Math. Springer, Heidelberg (2011) 87-170. | MR | Zbl

[26] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585-615. | MR | Zbl

[27] A. Mielke, R. Rossi, and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36-80. | Numdam | MR | Zbl

[28] A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381-410. | MR | Zbl

[29] A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387-416. | MR

[30] M. Negri, From phase-field to sharp cracks: convergence of quasi-static evolutions in a special setting. Appl. Math. Lett. 26 (2013) 219-224. | MR

[31] M. Negri and C. Ortner, Quasi-static propagation of brittle fracture by Griffith's criterion. Math. Models Methods Appl. Sci. 18 (2008) 1895-1925. | MR | Zbl

[32] C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38 (2006) 1214-1234. | MR | Zbl

[33] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564-614. | Numdam | MR | Zbl

[34] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Comm. Pure Appl. Math. 57 (2004) 1627-1672. | MR | Zbl

[35] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31 (2011) 1427-1451. | MR | Zbl

[36] P. Sicsic and J.-J. Marigo, From gradient damage laws to Griffith's theory of crack propagation. J. Elasticity 113 (2013) 55-74. | MR | Zbl

[37] U. Stefanelli, A variational characterization of rate-independent evolution. Math. Nach. 282 (2009) 1492-1512. | MR | Zbl

[38] R. Toader and C. Zanini, An artificial viscosity approach to quasi-static crack growth. Boll. Unione Mat. Ital. 2 (2009) 1-35. | MR | Zbl

Cité par Sources :