On asymptotic exit-time control problems lacking coercivity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 957-982.

The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem.

DOI : 10.1051/cocv/2014003
Classification : 49J15, 49N25, 93C10, 49L20, 49L25, 93D20
Mots clés : exit-time problems, impulsive optimal control problems, viscosity solutions, asymptotic controllability
@article{COCV_2014__20_4_957_0,
     author = {Motta, M. and Sartori, C.},
     title = {On asymptotic exit-time control problems lacking coercivity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {957--982},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014003},
     mrnumber = {3264230},
     zbl = {1301.49006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014003/}
}
TY  - JOUR
AU  - Motta, M.
AU  - Sartori, C.
TI  - On asymptotic exit-time control problems lacking coercivity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 957
EP  - 982
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014003/
DO  - 10.1051/cocv/2014003
LA  - en
ID  - COCV_2014__20_4_957_0
ER  - 
%0 Journal Article
%A Motta, M.
%A Sartori, C.
%T On asymptotic exit-time control problems lacking coercivity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 957-982
%V 20
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014003/
%R 10.1051/cocv/2014003
%G en
%F COCV_2014__20_4_957_0
Motta, M.; Sartori, C. On asymptotic exit-time control problems lacking coercivity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 957-982. doi : 10.1051/cocv/2014003. http://www.numdam.org/articles/10.1051/cocv/2014003/

[1] A. Bacciotti, Andrea and L. Rosier, Liapunov functions and stability in control theory. Second edition. Commun. Control Engrg. Ser. Springer-Verlag, Berlin (2005). | MR | Zbl

[2] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). | MR | Zbl

[3] A. Bressan and B. Piccoli, Introduction to the mathematical theory of control. Vol. 2. AIMS Ser. Appl. Math. Amer. Institute of Math. Sci. AIMS, Springfield, MO (2007). | MR | Zbl

[4] A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B 7 (1988) 641-656. | MR | Zbl

[5] D.A. Carlson and A. Haurie, Infinite horizon optimal control. Theory and applications. Vol. 290 of Lect. Notes Econom. Math. Systems. Springer-Verlag, Berlin (1987). | MR | Zbl

[6] P. Cannarsa and G. Da Prato, Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations. SIAM J. Control and Optim. 27 (1989) 861-875. | MR | Zbl

[7] P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function. J. Calc. Var. Partial Differ. Eqs. 3 (1995) 273-298. | MR | Zbl

[8] F. Da Lio, On the Bellman equation for infinite horizon problems with unbounded cost functional. J. Appl. Math. Optim. 41 (2000) 171-197. | MR | Zbl

[9] M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost. Nonlinear Differ. Equ. Appl. 11 (2004) 271-298. | MR | Zbl

[10] M. Malisoff, Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing Lagrangians, eikonal equations, and shape-from-shading. Nonlinear Differ. Equ. Appl. 11 (2004) 95-122. | MR | Zbl

[11] M. Miller and E.Y. Rubinovich, Impulsive control in continuous and discrete-continuous systems. Kluwer Academic/Plenum Publishers, New York (2003). | MR | Zbl

[12] M. Motta, Viscosity solutions of HJB equations with unbounded data and characteristic points. Appl. Math. Optim. 4 (2004) 1-26. | MR | Zbl

[13] M. Motta and M, F. Rampazzo, State-constrained control problems with neither coercivity nor L1 bounds on the controls. Ann. Mat. Pura Appl. 4 (1999) 117-142. | MR | Zbl

[14] M. Motta and F. Rampazzo, Asymptotic controllability and optimal control. J. Differ. Eqs. 254 (2013) 2744-2763. | MR | Zbl

[15] M. Motta and C. Sartori, Exit time problems for nonlinear unbounded control systems. Discrete Contin. Dyn. Syst. 5 (1999) 137-156. | MR | Zbl

[16] M. Motta and C. Sartori, The value function of an asymptotic exit-time optimal control problem. Nonlinear Differ. Equ. Appl. Springer (2014). | MR

[17] F. Rampazzo and C. Sartori, Hamilton-Jacobi-Bellman equations with fast gradient-dependence. Indiana Univ. Math. J. 49 (2000) 1043-1077. | MR | Zbl

[18] P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations I: Equations of unbounded and degenerate control problems without uniqueness. Adv. Differ. Eqs. (1999) 275-296. | MR | Zbl

Cité par Sources :